【題目】如圖,已知在梯形 ABCD 中,AD//BC,AB=AD=CD=13,AE⊥BC,垂足為 E,AE=12,求邊 BC 的長(zhǎng)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,EF切⊙O于點(diǎn)D,過(guò)點(diǎn)B作BH⊥EF于點(diǎn)H,交⊙O于點(diǎn)C,連接BD.
(1)求證:BD平分∠ABH;
(2)如果AB=12,BC=8,求圓心O到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1:已知直線與軸,軸分別交于,兩點(diǎn),以為直角頂點(diǎn)在第一象限內(nèi)做等腰Rt△.
(1)求,兩點(diǎn)的坐標(biāo);
(2)求所在直線的函數(shù)關(guān)系式;
(3)如圖2,直線交軸于點(diǎn),在直線上存在一點(diǎn),使是△的中線,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點(diǎn)O在邊BC上,OE⊥AB,OF⊥AC,垂足分別為E,F.求證:AB=AC;
(2)如圖,若點(diǎn)O在△ABC的內(nèi)部,求證:AB=AC;
(3)若點(diǎn)O在△ABC的外部,AB=AC成立嗎?請(qǐng)畫出圖表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A1,A2,A3,…和B1,B2,B3,…分別在直線y=x+和x軸上,△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,),那么點(diǎn)A3的縱坐標(biāo)是( )
A. B. 2cm C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y=相交于點(diǎn)A(m,6)和點(diǎn)B(﹣3,n),直線AB與y軸交于點(diǎn)C.
(1)求直線AB的表達(dá)式;
(2)求AC:CB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠ABC=∠ADC,AB∥CD,E為射線BC上一點(diǎn),AE平分∠BAD.
(1)如圖1,當(dāng)點(diǎn)E在線段BC上時(shí),求證:∠BAE=∠BEA.
(2)如圖2,當(dāng)點(diǎn)E在線段BC延長(zhǎng)線上時(shí),連接DE,若∠ADE=3∠CDE,∠AED=60°,求∠CED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平分,且,垂足分別是,連結(jié)與交于點(diǎn).
(1)求證:是線段的垂直平分線;
(2)若,求的周長(zhǎng)和四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,ABCD是一塊邊長(zhǎng)為2米的正方形鐵板,在邊AB上選取一點(diǎn)M,分別以AM和MB為邊截取兩塊相鄰的正方形板料. 當(dāng)AM的長(zhǎng)為何值時(shí),截取兩塊相鄰的正方形板料的總面積最小?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com