【題目】先化簡,再求值:
6x2-(2x-1)(3x-2)+(x+2)(x-2),其中x=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在①矩形、②菱形、③正方形、④平行四邊形中,既是軸對稱圖形,又是中心對稱圖形的有 ________(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與軸、軸分別交于點(diǎn)B、 A,點(diǎn)D、E分別是AO、AB的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng),速度為1cm/s;與此同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為.
(1)分別寫出點(diǎn)P和Q坐標(biāo)(用含t的代數(shù)式表示);
(2)①當(dāng)點(diǎn)Q在BE之間運(yùn)動(dòng)時(shí),設(shè)五邊形PQBOD的面積為(cm2),求y與t之間的函數(shù)關(guān)系式;
②在①的情況下,是否存在某一時(shí)刻t,使PQ分四邊形BODE兩部分的面積之比為S△PQE:S五邊形PQBOD=1:29?若存在,求出此時(shí)t的值;若不存在,請說明理由;
(3)以P為圓心、PQ長為半徑作圓,請問:在整個(gè)運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),⊙P能與△ABO的一邊相切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別是BC、CD邊上的點(diǎn),且∠EAF=45°,對角線BD交AE于點(diǎn)M,交AF于點(diǎn)N.若AB=4,BM=2,則MN的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明過程:
已知:如圖,∠D=123°,∠EFD=57°,∠1=∠2
求證:∠3=∠B
證明:∵∠D=123°,∠EFD=57°(已知)
∴∠D+∠EFD=180°
∴AD∥()
又∵∠1=∠2(已知)
∴∥BC(內(nèi)錯(cuò)角相等,兩直線平行)
∴EF∥()
∴∠3=∠B(兩直線平行,同位角相等)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com