【題目】將命題“兩個(gè)全等三角形的面積相等”改寫成“如果,那么”的形式: ________________ .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 兩個(gè)等邊三角形一定全等 B. 形狀相同的兩個(gè)三角形全等
C. 面積相等的兩個(gè)三角形全等 D. 全等三角形的面積一定相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為x=1的拋物線經(jīng)過A(﹣1,0),B(4,5)兩點(diǎn).
(1)求拋物線的解析式;
(2)P為直線AB上的動點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)Q.
①當(dāng)PQ=6時(shí),求點(diǎn)P的坐標(biāo);
②是否存在點(diǎn)P,使以A、P、Q為頂點(diǎn)的三角形為等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息:
請結(jié)合以上信息,解答下列問題:
(1)求甲、乙兩種商品的進(jìn)貨單價(jià);
(2)已知甲、乙兩種商品的零售單價(jià)分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場調(diào)查發(fā)現(xiàn),甲種商品零售單價(jià)每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價(jià)下降m(m>0)元,在不考慮其他因素的條件下,求當(dāng)m為何值時(shí),商店每天銷售甲、乙兩種商品獲取的總利潤為1800元(注:單件利潤=零售單價(jià)﹣進(jìn)貨單價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(2,3),B(-3,n)兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若P是y軸上一點(diǎn),且滿足△PAB的面積是5,求OP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)和一次函數(shù)y=2x﹣1,其中一次函數(shù)的圖象經(jīng)過(a,b),(a+1,b+k)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)如圖,已知點(diǎn)A在第一象限,且同時(shí)在上述兩個(gè)函數(shù)的圖象上,求點(diǎn)A的坐標(biāo);
(3)利用(2)的結(jié)果,請問:在x軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,把符合條件的P點(diǎn)坐標(biāo)都求出來;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中記載了這樣一道題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)代的語言表述為:“如果AB為⊙O的直徑,弦CD⊥AB于E,AE=1寸,CD=10寸,那么直徑AB的長為多少寸?”請你補(bǔ)全示意圖,并求出AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com