【題目】如圖,在坡頂處的同一水平面上有一座紀(jì)念碑垂直于水平,小明在斜坡底處測得該紀(jì)念碑頂部的仰角為,然后他沿著坡比的斜坡攀行了39米到達(dá)坡頂,在坡頂處又測得該紀(jì)念碑頂部的仰角為.求紀(jì)念碑的高度.(結(jié)果精確到1米,參考數(shù)據(jù):,,)
【答案】35.
【解析】
過點B作BG⊥AE,垂足為點G,如圖.根據(jù)已知條件得到設(shè)BG=5k,則AG=12k,在Rt△BAG中,由勾股定理得,AB=13k,得到BG=15,于是得到坡頂B到AE的距離為15米.延長DC交AE于點F,根據(jù)平行線的性質(zhì)得到DF⊥AE,根據(jù)矩形的性質(zhì)得到AF=DF,設(shè)DC=x,則AF=36+GF,DF=x+15,得到BC=GF=x21,根據(jù)三角函數(shù)的定義即可得到結(jié)論.
:過點B作BG⊥AE,垂足為點G,
∵i=tan∠BAG= =5:12,
∴設(shè)BG=5k,則AG=12k,
在Rt△BAG中,由勾股定理得,AB=13k,
∴13k=39,解得k=3,
∴BG=15,
延長DC交AE于點F,
∵BC⊥DC,BC∥AE,
∴DF⊥AE,
∴四邊形BCFG是矩形,CF=BG=15,BC=GF,
∵∠DAF=45°,
∴AF=DF,
設(shè)DC=x,則AF=36+GF,DF=x+15,即x+15=35+GF,
∴BC=GF=x21,
在Rt△DBC中,tan∠DBC=,
即
解得x≈35,
答:紀(jì)念碑CD的高度約為35米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)的圖象與反比例函數(shù)的圖象交于點A(m,4).
(1)求正比例函數(shù)的解析式;
(2)將正比例函數(shù)的圖象向下平移6個單位得到直線l,設(shè)直線l與x軸的交點為B,求∠ABO的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與x軸交于點B,與y軸交于點C,拋物線
與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C.
(1)求拋物線的解析式;
(2)點M是上述拋物線上一點,如果△ABM和△ABC相似,求點M的坐標(biāo);
(3)連接AC,求頂點D、E、F、G在△ABC各邊上的矩形DEFC面積最大時,寫出該矩形在AB邊上的頂點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).
(1)求直線與雙曲線的表達(dá)式;
(2)過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在中,,,點為射線上一點(與點不重合),過點作于點,且(點與點在射線同側(cè)),連接,.
(1)如圖1,當(dāng)點在線段上時,請直接寫出的度數(shù).
(2)當(dāng)點在線段的延長線上時,依題意在圖2中補(bǔ)全圖形并判斷(1)中結(jié)論是否成立?若成立,請證明;若不成立,請說明理由.
(3)在(1)的條件下,與相交于點,若,直接寫出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上, 頂點C、D在圓內(nèi),將正方形ABCD沿圓的內(nèi)壁作無滑動的滾動.當(dāng)滾動一周回到原位置時,點C運動的路徑長為__ _.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分線,且交AD于P,如果AP=2,則AC的長為( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明解方程出現(xiàn)了錯誤,解答過程如下:
方程兩邊都乘以,得(第一步)
去括號,得(第二步)
移項,合并同類項,得(第三步)
解得(第四步)
原方程的解為(第五步)
(1)小明解答過程是從第_____步開始出錯的,這一步正確的解答結(jié)果_____,此步的根據(jù)是_____.
(2)小明的解答過程缺少_____步驟,此方程的解為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探究)
(1)觀察下列算式,并完成填空:
1=12
1+3=4=22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+…+(2n-1)=______.(n是正整數(shù))
(2)如圖是某市一廣場用正六邊形、正方形和正三角形地板磚鋪設(shè)的圖案,圖案中央是一塊正六邊形地板磚,周圍是正方形和正三角形的地板磚.從里向外第一層包括6塊正方形和6塊正三角形地板磚;第二層包括6塊正方形和18塊正三角形地板磚;以此遞推.
①第3層中分別含有______塊正方形和______塊正三角形地板磚;
②第n層中含有______塊正三角形地板磚(用含n的代數(shù)式表示).
(應(yīng)用)
該市打算在一個新建廣場中央,采用如圖樣式的圖案鋪設(shè)地面,現(xiàn)有1塊正六邊形、150塊正方形和420塊正三角形地板磚,問:鋪設(shè)這樣的圖案,最多能鋪多少層?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com