【題目】如圖,已知,在Rt ΔABC中,∠ABC=900, AB=BC=2.
(1)用尺規(guī)作∠A的平分線AD.
(2)角平分線AD交BC于點(diǎn)D,求BD的長(zhǎng).
【答案】(1)見(jiàn)解析(2)2﹣2
【解析】試題分析:(1)利用基本作作(作已知角的平分線)作AD平分∠BAC;
(2)作DE⊥AC于E,如圖,先判斷△ABC為等腰直角三角形得到∠C=45°,則可判斷△CDE為等腰直角三角形,則CD=DE,再根據(jù)角平分線的性質(zhì)得到BD=BE,設(shè)BD=x,則CD=x,然后利用BC=2列方程x+x=2,再解方程即可.
解:(1)如圖,AD為所求;
(2)作DE⊥AC于E,如圖,
∵∠ABC=90°,AB=BC=2.
∴△ABC為等腰直角三角形,
∴∠C=45°,
∴△CDE為等腰直角三角形,
∴CD=DE,
∵AD為角平分線,DB⊥AB,DE⊥AC,
∴BD=BE,
設(shè)BD=x,則CD=x,
∴x+x=2,
∴x=2(﹣1)=2﹣2,
即BD的長(zhǎng)為2﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l與直線y=2x+1的交點(diǎn)的橫坐標(biāo)為2,與直線y=﹣x+2的交點(diǎn)的縱坐標(biāo)為1,求直線l對(duì)應(yīng)的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)等腰三角形一邊長(zhǎng)為4cm,另一邊長(zhǎng)為5cm,那么這個(gè)等腰三角形的周長(zhǎng)是( )
A.13cm B.14cm C.13cm或14cm D.以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )
A.如圖1,展開(kāi)后測(cè)得∠1=∠2
B.如圖2,展開(kāi)后測(cè)得∠1=∠2且∠3=∠4
C.如圖3,測(cè)得∠1=∠2
D.如圖4,展開(kāi)后再沿CD折疊,兩條折痕的交點(diǎn)為O,測(cè)得OA=OB,OC=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按一定規(guī)律排列的一列數(shù)依次為: -2,4,-8,16,-32 按照此規(guī)律排列下去,
這列數(shù)中第7個(gè)數(shù)是________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,⊙O的半徑為r(r>0),若點(diǎn)P′在射線OP上,滿足OP′OP=r2,則稱點(diǎn)P′是點(diǎn)P關(guān)于⊙O的“反演點(diǎn)”.
如圖2,⊙O的半徑為4,點(diǎn)B在⊙O上,∠BOA=60°,OA=8,若點(diǎn)A′,B′分別是點(diǎn)A,B關(guān)于⊙O的反演點(diǎn),求A′B′的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】收入和支出是一對(duì)具有相反意義的量,如果收入1000元記作+1000元,那么-600元表示________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:①垂直于弦的直徑平分弦以及弦所對(duì)的兩條;②在同圓或等圓中,相等的弦所對(duì)的圓周角相等;③三角形有且只有一個(gè)外接圓;④矩形一定有一個(gè)外接圓;⑤三角形的外心到三角形三邊的距離相等。其中真命題的個(gè)數(shù)有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com