【題目】如圖,點(diǎn)A,O,B在同一條直線上,∠AOC=∠BOC,若∠1=∠2,則圖中與∠2互余的角共有( )對(duì)

A.2
B.3
C.4
D.5

【答案】A
【解析】∵點(diǎn)A,O,B在同一條直線上,∠AOC=∠BOC,∠1=∠2,
∴∠AOC=∠BOC=90°,
∴∠2+∠DOC=90°,∠1+∠EOA=90°,∠1+∠COD=90°,∠2+∠EOA=90°,
∴圖中∠2互余的角共有2對(duì),
故答案為:A.
由點(diǎn)A,O,B在同一條直線上,∠AOC=∠BOC,∠1=∠2,得出∠AOC=∠BOC=90°,根據(jù)余角的定義得出∠2+∠DOC=90°,∠1+∠EOA=90°,∠1+∠COD=90°,∠2+∠EOA=90°,根據(jù)等角的余角相等得出圖中與∠2互余的角共有2對(duì) 。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把拋物線y=﹣2x22+3先向右平移1個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度后,所得函數(shù)的表達(dá)式為( 。

A.y=﹣2x12+2B.y=﹣2x+12+2

C.y=﹣2x32+5D.y2x32+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下面的多項(xiàng)式中,能因式分解的是( )

A. m2+n B. m2-m-1 C. m2-m+1 D. m2-2m+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中, AC=6, BC=4.

(1)用直尺和圓規(guī)作∠ACB的角平分線CD,交AB于點(diǎn)D;

(保留作圖痕跡,不要求寫作法和證明)

(2)在(1)所作的圖形中,若ACD的面積為3,求BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,點(diǎn)ECB的延長(zhǎng)線上,連結(jié)ACAE,ACB=BAE=45°

1)求證:AE是⊙O的切線;

2)若AB=AD,AC=tanADC=3,BE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以每秒2厘米的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上以每秒a厘米的速度由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒)(0≤t≤3).

(1)用的代數(shù)式表示PC的長(zhǎng)度;
(2)若點(diǎn)P、Q的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)P、Q的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度a為多少時(shí),能夠使△BPD與△CQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】9x3y2+12x2y2—6xy3中各項(xiàng)的公因式是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC,AC3cm,ACB90°,ABC60°,將ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)至ABC,點(diǎn)C′在直線AB上,則邊AC掃過(guò)區(qū)域(圖中陰影部分)的面積為____________cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B,平行四邊形ABCD中,D(6,0),函數(shù)y=x+m圖象過(guò)點(diǎn)E(4,0),與y軸交于G,動(dòng)點(diǎn)P從O點(diǎn)沿y軸正方向以每秒2個(gè)單位的速度出發(fā),同時(shí),以P為圓心的圓,半徑從6個(gè)單位起以每秒1個(gè)單位的速度縮小,設(shè)運(yùn)動(dòng)時(shí)間為t.

(1)若⊙P與直線EG相切,求⊙P的面積;

(2)以CD為邊作等邊三角形CDQ,若⊙P內(nèi)存在Q點(diǎn),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案