【題目】如圖1所示,將一個邊長為2的正方形ABCD和一個長為2,寬為1的矩形CEFD拼在一起,構(gòu)成一個大的矩形ABEF,現(xiàn)將小矩形CEFD繞點C順時針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為α.
(1)當(dāng)點D′恰好落在EF邊上時,求旋轉(zhuǎn)角α的值;
(2)如圖2,G為BC中點,且0°<α<90°,求證:GD′=E′D.
【答案】(1)∠α=30°;(2)詳見解析.
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,則∠CD′E=30°,然后根據(jù)平行線的性質(zhì)即可得到∠α=30°;(2)由G為BC中點可得CG=CE,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠D′CE′=∠DCE=90°,CE=CE′CE,則∠GCD′=∠DCE′=90°+α,然后根據(jù)“SAS”可判斷△GCD′≌△E′CD,則GD′=E′D.
(1)解:∵長方形CEFD繞點C順時針旋轉(zhuǎn)至CE′F′D′,
∴CD′=CD=2,
在Rt△CED′中,CD′=2,CE=1,
∴∠CD′E=30°,
∵CD∥EF,
∴∠α=30°;
(2)證明:∵G為BC中點,
∴CG=1,
∴CG=CE,
∵長方形CEFD繞點C順時針旋轉(zhuǎn)至CE′F′D′,
∴∠D′CE′=∠DCE=90°,CE=CE′=CG,
∴∠GCD′=∠DCE′=90°+α,
在△GCD′和△E′CD中
,
∴△GCD′≌△E′CD(SAS),
∴GD′=E′D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩棵樹的高度分別為AB=6 m,CD=8 m,兩樹的根部間的距離AC=4 m,小強沿著正對這兩棵樹的方向從左向右前進,如果小強的眼睛與地面的距離為1.6 m,當(dāng)小強與樹AB的距離小于多少時,就不能看到樹CD的樹頂D?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(a≠0)的圖象在第一象限交于A、B兩點,A點的坐標(biāo)為(m,4),B點的坐標(biāo)為(3,2),連接OA、OB,過B作BD⊥y軸,垂足為D,交OA于C.若OC=CA,
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)求△AOB的面積;
(3)在直線BD上是否存在一點E,使得△AOE是直角三角形,求出所有可能的E點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,S為一個點光源,照射在底面半徑和高都為2m的圓錐體上,在地面上形成的影子為EB,且∠SBA=30°。(以下計算結(jié)果都保留根號)
(1)、求影子EB的長;
(2)、若∠SAC=60°,求光源S離開地面的高度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點D在BC上,,過點D作,垂足為E,經(jīng)過A,B,D三點.
求證:AB是的直徑;
判斷DE與的位置關(guān)系,并加以證明;
若的半徑為10m,,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4件同型號的產(chǎn)品中,有1件不合格品和3件合格品.
(1)從這4件產(chǎn)品中隨機抽取1件進行檢測,求抽到的是不合格品的概率;
(2)從這4件產(chǎn)品中隨機抽取2件進行檢測,求抽到的都是合格品的概率;
(3)在這4件產(chǎn)品中加入x件合格品后,進行如下試驗:隨機抽取1件進行檢測,然后放回,多次重復(fù)這個試驗,通過大量重復(fù)試驗后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,則可以推算出x的值大約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某船于上午11時30分在A處觀察海島B在北偏東60°,該船以10海里/小時的速度向東航行至C處,再觀察海島在北偏東30°,且船距離海島20海里.
(1)求該船到達C處的時刻.
(2)若該船從C處繼續(xù)向東航行,何時到達B島正南的D處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓同學(xué)們了解自己的體育水平,初二1班的體育劉老師對全班45名學(xué)生進行了一次體育模擬測試(得分均為整數(shù)),成績滿分為10分,1班的體育委員根據(jù)這次測試成績,制作了統(tǒng)計圖和分析表如下:
初二1班體育模擬測試成績分析表
根據(jù)以上信息,解答下列問題:
(1)這個班共有男生____人,共有女生____人;
(2)補全初二1班體育模擬測試成績分析表.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣與x軸交于點A(1,0)和點B(﹣3,0).繞點A旋轉(zhuǎn)的直線l:y=kx+b1交拋物線于另一點D,交y軸于點C.
(1)求拋物線的函數(shù)表達式;
(2)當(dāng)點D在第二象限且滿足CD=5AC時,求直線l的解析式;
(3)在(2)的條件下,點E為直線l下方拋物線上的一點,直接寫出△ACE面積的最大值;
(4)如圖2,在拋物線的對稱軸上有一點P,其縱坐標(biāo)為4,點Q在拋物線上,當(dāng)直線l與y軸的交點C位于y軸負(fù)半軸時,是否存在以點A,D,P,Q為頂點的平行四邊形?若存在,請直接寫出點D的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com