【題目】如圖1內(nèi)接于,AD是直徑,的平分線交BDH,交于點(diǎn)C,連接DC并延長,交AB的延長線于點(diǎn)E.

1)求證:;

2)若,求的值

3)如圖2,連接CB并延長,交DA的延長線于點(diǎn)F,若,求的面積.

【答案】1)見解析;(2 ;(3

【解析】

1)根據(jù)直徑所對的圓周角是直角可得,然后利用ASA判定△ACD≌△ACE即可推出AE=AD;

2)連接OCBDG,設(shè),根據(jù)垂徑定理的推論可得出OC垂直平分BD,進(jìn)而推出OG為中位線,再判定,利用對應(yīng)邊成比例即可求出的值;

3)連接OCBDG,由(2)可知:OCABOG=AB,然后利用ASA判定△BHA≌△GHC,設(shè),則,再判定,利用對應(yīng)邊成比例求出m的值,進(jìn)而得到ABAD的長,再用勾股定理求出BD,可求出△BED的面積,由CDE的中點(diǎn)可得△BEC為△BED面積的一半,即可得出答案.

1)證明:∵AD的直徑

∵AC平分

在△ACD和△ACE中,

∵∠ACD=ACEAC=AC,∠DAC=EAC

∴△ACD≌△ACEASA

2)如圖,連接OCBDG,

,設(shè)

,OC=AD=

OC垂直平分BD

又∵OAD的中點(diǎn)

OG為△ABD的中位線

OCABOG=,CG=

3)如圖,連接OCBDG,

由(2)可知:OCAB,OG=AB

∴∠BHA=GCH

在△BHA和△GHC中,

∵∠BHA=GCH,AH=CH,∠BHA=GHC

設(shè),則

,

AD的直徑

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩張等寬的紙條交叉疊放在一起,若重合部分構(gòu)成的四邊形ABCD中,AB=3,AC=2,則BD的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在ABC中,∠BAC90°,ABAC

1)如圖1,將線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到AD,連結(jié)CD、BD,∠BAC的平分線交BD于點(diǎn)E,連結(jié)CE

①求證:∠AED=∠CED

②用等式表示線段AE、CEBD之間的數(shù)量關(guān)系(直接寫出結(jié)果);

2)在圖2中,若將線段AC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到AD,連結(jié)CD、BD,∠BAC的平分線交BD的延長線于點(diǎn)E,連結(jié)CE.請補(bǔ)全圖形,并用等式表示線段AECE、BD之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y關(guān)于x的函數(shù)表達(dá)式是,下列結(jié)論不正確的是(

A.,函數(shù)的最大值是5

B.,當(dāng)時(shí),yx的增大而增大

C.無論a為何值時(shí),函數(shù)圖象一定經(jīng)過點(diǎn)

D.無論a為何值時(shí),函數(shù)圖象與x軸都有兩個交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線的圖象與x軸交于B兩點(diǎn),與y軸交于點(diǎn),對稱軸x軸交于點(diǎn)H.

1)求拋物線的函數(shù)表達(dá)式

2)直線y軸交于點(diǎn)E,與拋物線交于點(diǎn)P,Q(點(diǎn)Py軸左側(cè),點(diǎn)Q y軸右側(cè)),連接CP,CQ,若的面積為,求點(diǎn)P,Q的坐標(biāo).

3)在(2)的條件下,連接ACPQG,在對稱軸上是否存在一點(diǎn)K,連接GK,將線段GK繞點(diǎn)G逆時(shí)針旋轉(zhuǎn)90°,使點(diǎn)K恰好落在拋物線上,若存在,請直接寫出點(diǎn)K的坐標(biāo)不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需要繞行B地,已知B地位于A地北偏東67°方向,距離A520kmC地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求A地到C地之間高鐵線路的長(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin67°≈0.92;cos67°≈0.381.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)ykx+b(k≠0)的圖象與反比例函數(shù)y (n≠0)的圖象交于第二、四象限內(nèi)的AB兩點(diǎn),與x軸交于點(diǎn)C,點(diǎn)B 坐標(biāo)為(m,﹣1)ADx軸,且AD3,tanAOD

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOB的面積;

(3)點(diǎn)Ex軸上一點(diǎn),且△AOE是等腰三角形,請直接寫出所有符合條件的E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①是由五個完全相同的小正方體組成的立體圖形,將圖①中的一個小正方體改變位置后如圖②.則三視圖發(fā)生改變的是( )

A.主視圖B.俯視圖

C.左視圖D.主視圖、俯視圖和左視圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2與直線ykx2k+3交于A,B兩點(diǎn),若∠AOB90°,求k的值.

查看答案和解析>>

同步練習(xí)冊答案