【題目】圖1是太陽能熱水器裝置的示意圖,利用玻璃吸熱管可以把太陽能轉(zhuǎn)化為熱能,玻璃吸熱管與太陽光線垂直時(shí),吸收太陽能的效果最好,假設(shè)某用戶要求根據(jù)本地區(qū)冬至正午時(shí)刻太陽光線與地面水平線的夾角(θ)確定玻璃吸熱管的傾斜角(太陽光線與玻璃吸熱管垂直),請(qǐng)完成以下計(jì)算:
如圖2,AB⊥BC,垂足為點(diǎn)B,EA⊥AB,垂足為點(diǎn)A,CD∥AB,CD=10cm,DE=120cm,F(xiàn)G⊥DE,垂足為點(diǎn)G.
(參考數(shù)據(jù):sin37°50′≈0.61,cos37°50′≈0.79,tan37°50′≈0.78)

(1)若∠θ=37°50′,則AB的長(zhǎng)約為cm;
(2)若FG=30cm,∠θ=60°,求CF的長(zhǎng).

【答案】
(1)83.2
(2)

解:如圖,延長(zhǎng)ED、BC交于點(diǎn)K,

由(1)知∠θ=∠3=∠K=60°,

在Rt△CDK中,CK= = ,

在Rt△KGF中,KF= = = ,

則CF=KF﹣KC= = =


【解析】解:(1)如圖,作EP⊥BC于點(diǎn)P,作DQ⊥EP于點(diǎn)Q,

則CD=PQ=10,∠2+∠3=90°,
∵∠1+∠θ=90°,且∠1=∠2,
∴∠3=∠θ=37°50′,
則EQ=DEsin∠3=120×sin37°50′,
∴AB=EP=EQ+PQ=120sin37°50′+10=83.2,
所以答案是:83.2;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AC=6,BD=8,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)D停止,點(diǎn)P′是點(diǎn)P關(guān)于BD的對(duì)稱點(diǎn),PP′交BD于點(diǎn)M,若BM=x,△OPP′的面積為y,則y與x之間的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如下,則一次函數(shù)y=ax﹣2b與反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一座鋼結(jié)構(gòu)橋梁的框架是△ABC,水平橫梁BC長(zhǎng)18米,中柱AD高6米,其中D是BC的中點(diǎn),且AD⊥BC.
(1)求sinB的值;
(2)現(xiàn)需要加裝支架DE、EF,其中點(diǎn)E在AB上,BE=2AE,且EF⊥BC,垂足為點(diǎn)F,求支架DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為5,點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)B在y軸上,若反比例函數(shù)y= (k≠0)的圖象過點(diǎn)C,則該反比例函數(shù)的表達(dá)式為(
A.y=
B.y=
C.y=
D.y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過A(﹣1,﹣4),B(2,2)兩點(diǎn),P為反比例函數(shù)y= 圖象上一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),過點(diǎn)P作y軸的垂線,垂足為C,則△PCO的面積為( )
A.2
B.4
C.8
D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,點(diǎn)E,O,F(xiàn)分別為AB,AC,AD的中點(diǎn),連接CE,CF,OE,OF.
(1)求證:△BCE≌△DCF;
(2)當(dāng)AB與BC滿足什么關(guān)系時(shí),四邊形AEOF是正方形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算:6cos45°+( ﹣1+( ﹣1.73)0+|5﹣3 |+42017×(﹣0.25)2017
(2)先化簡(jiǎn),再求值:( ﹣a+1)÷ + ﹣a,并從﹣1,0,2中選一個(gè)合適的數(shù)作為a的值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某條道路上通行車輛限速為60千米/時(shí),在離道路50米的點(diǎn)P處建一個(gè)監(jiān)測(cè)點(diǎn),道路AB段為檢測(cè)區(qū)(如圖).在△ABP中,已知∠PAB=30°,∠PBA=45°,那么車輛通過AB段的時(shí)間在多少秒以內(nèi)時(shí),可認(rèn)定為超速(精確到0.1秒)?(參考數(shù)據(jù): ≈1.41, ≈1.73,60千米/時(shí)= 米/秒)

查看答案和解析>>

同步練習(xí)冊(cè)答案