精英家教網 > 初中數學 > 題目詳情
如圖,四邊形ABCO是平行四邊形,AB=4,OB=2,拋物線過A、B、C三點,與x軸交于另一點D.一動點P以每秒1個單位長度的速度從B點出發(fā)沿BA向點A運動,運動到A停止,同時一動點Q從點D出發(fā),以每秒3個單位長度的速度沿DC向點C運動,與點P同時停止.
(1)求拋物線的解析式;
(2)若拋物線的對稱軸與AB交于點E,與x軸交于點F,當點P運動時間t為何值時,四邊形POQE是等腰梯形?
(3)當t為何值時,以P、B、O為頂點的三角形與以點Q、B、O為頂點的三角形相似?

【答案】分析:(1)根據AB、OB的長,即可得到A、B點的坐標;由于四邊形ABCO是平行四邊形,則AB=OC,由此可求出OC的長,即可得到C點的坐標,進而可用待定系數法求出拋物線的解析式;
(2)根據拋物線的解析式可求出D點的坐標及拋物線的對稱軸方程,進而可求出E、F的坐標;若四邊形POQE是等腰梯形,則OP=EQ,而OB=EF,可得BP=FQ,根據這個等量關系即可求出t的值;
(3)由于∠PBO、∠QOB都是直角,對應相等,若以P、B、O為頂點的三角形與以點Q、B、O為頂點的三角形相似,則有兩種情況:
①P、Q在y軸同側,②P、Q在y軸兩側;
每種情況又分為△PBO∽△QOB(此時兩者全等),△PBO∽△BOQ兩種情況;根據不同的相似三角形所得到的不同的比例線段即可求出t的值.
解答:解:(1)∵四邊形ABCO是平行四邊形,
∴OC=AB=4
∴A(4,2),B(0,2),C(-4,0);(1分)
∵拋物線y=ax2+bx+c過點B,
∴c=2(2分)
由題意,有
解得(3分)
∴所求拋物線的解析式為y=-+x+2;(4分)

(2)將拋物線的解析式配方,得y=-
∴拋物線的對稱軸為x=2;(5分)
∴D(8,0),E(2,2),F(xiàn)(2,0)
欲使四邊形POQE為等腰梯形,則有OP=QE,即BP=FQ;
∴t=6-3t,
即t=1.5;(7分)


(3)欲使以點P、B、O為頂點的三角形與以點Q、B、O為頂點的三角形相似,
∵∠PBO=∠BOQ=90°,
∴有=,
即PB=OQ或OB2=PB•QO;
①若P、Q在y軸的同側;
當PB=OQ時,t=8-3t,
∴t=2.(8分)
當OB2=PB•QO時,t(8-3t)=4,
即3t2-8t+4=0,
解得t=2,t=;
②當P、Q在y軸的兩側;
當PB=OQ時,Q、C重合,P、A重合,此時t=4;
當OB2=PB•QO時,t(3t-8)=4,
即3t2-8t-4=0,
解得t=
∵t=<0,故舍去;
∴t=;(11分)
∴當t=2或t=或t=4或t=秒時,以P、B、O為頂點的三角形與以點Q、B、O為頂點的三角形相似.(12分)
點評:此題是二次函數的綜合類試題,涉及到二次函數解析式的確定、等腰梯形的判定、相似三角形的判定和性質等重要知識點,在求有關動點問題時要注意分析題意分情況討論結果.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,四邊形ABCO是平行四邊形,AB=4,OB=2,拋物線過A、B、C三點,與x軸交于另一點D.一動點P以每秒1個單位長度的速度從B點出發(fā)沿BA向點A運動,運精英家教網動到A停止,同時一動點Q從點D出發(fā),以每秒3個單位長度的速度沿DC向點C運動,與點P同時停止.
(1)求拋物線的解析式;
(2)若拋物線的對稱軸與AB交于點E,與x軸交于點F,當點P運動時間t為何值時,四邊形POQE是等腰梯形?
(3)當t為何值時,以P、B、O為頂點的三角形與以點Q、B、O為頂點的三角形相似?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCO是矩形,點A(3,0),B(3,4),動點M、N分別從點O、B出發(fā),以每秒1個單位的速度運動,其中點M沿OA向終點A運動,點N沿BC向終點C運動.過點N作NP∥OC,交AC于點P,連接MP,已知動點運動了x秒,△MPA的面積為S.精英家教網
(1)求點P的坐標.(用含x的代數式表示)
(2)寫出S關于x的函數關系式,并求出S的最大值.
(3)當△APM與△ACO相似時,求出點P的坐標.
(4)△PMA能否成為等腰三角形?如能,直接寫出所有點P的坐標;如不能,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCO是平行四邊形,AB=4,OB=2,拋物線過A、B、C三點,與x軸交于另一點D.一動點P以每秒1個單位長度的速度從點B出發(fā)沿BA向點A運動,運動到點A停止,同時一動點Q從點D出發(fā),以每秒3個單位長度的速度沿DC向點C運動,與點P同時停止.
(1)求拋物線的解析式;
(2)若拋物線的對稱軸與AB交于點E,與x軸交于點F,當點P的運動時間t為何值時,四邊形POQE是等腰梯形?

查看答案和解析>>

科目:初中數學 來源:2011-2012學年北京市通州區(qū)九年級(上)期末數學試卷(解析版) 題型:解答題

如圖,四邊形ABCO是平行四邊形,AB=4,OB=2,拋物線過A、B、C三點,與x軸交于另一點D.一動點P以每秒1個單位長度的速度從B點出發(fā)沿BA向點A運動,運動到A停止,同時一動點Q從點D出發(fā),以每秒3個單位長度的速度沿DC向點C運動,與點P同時停止.
(1)求拋物線的解析式;
(2)若拋物線的對稱軸與AB交于點E,與x軸交于點F,當點P運動時間t為何值時,四邊形POQE是等腰梯形?
(3)當t為何值時,以P、B、O為頂點的三角形與以點Q、B、O為頂點的三角形相似?

查看答案和解析>>

科目:初中數學 來源:2012年遼寧省朝陽市中考數學模擬試卷(一)(解析版) 題型:解答題

如圖,四邊形ABCO是平行四邊形,AB=4,OB=2,拋物線過A、B、C三點,與x軸交于另一點D.一動點P以每秒1個單位長度的速度從B點出發(fā)沿BA向點A運動,運動到A停止,同時一動點Q從點D出發(fā),以每秒3個單位長度的速度沿DC向點C運動,與點P同時停止.
(1)求拋物線的解析式;
(2)若拋物線的對稱軸與AB交于點E,與x軸交于點F,當點P運動時間t為何值時,四邊形POQE是等腰梯形?
(3)當t為何值時,以P、B、O為頂點的三角形與以點Q、B、O為頂點的三角形相似?

查看答案和解析>>

同步練習冊答案