(2013•本溪)如圖,⊙O的半徑是3,點(diǎn)P是弦AB延長(zhǎng)線上的一點(diǎn),連接OP,若OP=4,∠APO=30°,則弦AB的長(zhǎng)為( 。
分析:先過(guò)O作OC⊥AP,連結(jié)OB,根據(jù)OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根據(jù)勾股定理求出BC的值,即可求出AB的值.
解答:解:過(guò)O作OC⊥AP于點(diǎn)C,連結(jié)OB,
∵OP=4,∠APO=30°,
∴OC=sin30°×4=2,
∵OB=3,
∴BC=
OB2-OC2
=
32-22
=
5

∴AB=2
5
;
故選A.
點(diǎn)評(píng):此題考查了垂經(jīng)定理,用到的知識(shí)點(diǎn)是垂經(jīng)定理、含30度角的直角三角形、勾股定理,解題的關(guān)鍵是作出輔助線,構(gòu)造直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•本溪)如圖放置的圓柱體的左視圖為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•本溪)如圖,在菱形ABCD中,∠BAD=2∠B,E,F(xiàn)分別為BC,CD的中點(diǎn),連接AE、AC、AF,則圖中與△ABE全等的三角形(△ABE除外)有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•本溪)如圖,在矩形OABC中,AB=2BC,點(diǎn)A在y軸的正半軸上,點(diǎn)C在x軸的正半軸上,連接OB,反比例函數(shù)y=
k
x
(k≠0,x>0)的圖象經(jīng)過(guò)OB的中點(diǎn)D,與BC邊交于點(diǎn)E,點(diǎn)E的橫坐標(biāo)是4,則k的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•本溪)如圖,⊙O是△ACD的外接圓,AB是直徑,過(guò)點(diǎn)D作直線DE∥AB,過(guò)點(diǎn)B作直線BE∥AD,兩直線交于點(diǎn)E,如果∠ACD=45°,⊙O的半徑是4cm
(1)請(qǐng)判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求圖中陰影部分的面積(結(jié)果用π表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案