(2010•泉州)如圖,點A,B,C,在⊙O上,∠A=45°,則∠BOC=    度.
【答案】分析:欲求∠BOC,又已知一同弧所對的圓周角,可利用圓周角與圓心角的關系求解.
解答:解:∵∠BOC、∠A是同弧所對的圓心角和圓周角,
∴∠BOC=2∠A=90°.
點評:此題主要考查的是圓周角定理:同弧所對的圓周角是圓心角的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•泉州)如圖所示,已知拋物線的圖象與y軸相交于點B(0,1),點C(m,n)在該拋物線圖象上,且以BC為直徑的⊙M恰好經(jīng)過頂點A.
(1)求k的值;
(2)求點C的坐標;
(3)若點P的縱坐標為t,且點P在該拋物線的對稱軸l上運動,試探索:
①當S1<S<S2時,求t的取值范圍(其中:S為△PAB的面積,S1為△OAB的面積,S2為四邊形OACB的面積);
②當t取何值時,點P在⊙M上.(寫出t的值即可)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省泉州市中考數(shù)學試卷(解析版) 題型:解答題

(2010•泉州)如圖所示,已知拋物線的圖象與y軸相交于點B(0,1),點C(m,n)在該拋物線圖象上,且以BC為直徑的⊙M恰好經(jīng)過頂點A.
(1)求k的值;
(2)求點C的坐標;
(3)若點P的縱坐標為t,且點P在該拋物線的對稱軸l上運動,試探索:
①當S1<S<S2時,求t的取值范圍(其中:S為△PAB的面積,S1為△OAB的面積,S2為四邊形OACB的面積);
②當t取何值時,點P在⊙M上.(寫出t的值即可)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(06)(解析版) 題型:解答題

(2010•泉州)如圖,在梯形ABCD中,∠A=∠B=90°,AB=,點E在AB上,∠AED=45°,DE=6,CE=7.求:AE的長及sin∠BCE的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2010•泉州)如圖所示,在折紙活動中,小明制作了一張△ABC紙片,點D,E分別是邊AB、AC上,將△ABC沿著DE重疊壓平,A與A'重合,若∠A=70°,則∠1+∠2=( )

A.140°
B.130°
C.110°
D.70°

查看答案和解析>>

同步練習冊答案