如圖,一個(gè)圓桶兒,底面直徑為16cm,高為18cm,則一只小蟲底部點(diǎn)A爬到上底B處,則小蟲所爬的最短路徑長(zhǎng)是(π取3)( )
A.20cm B.30cm C.40cm D.50cm
B【考點(diǎn)】平面展開(kāi)-最短路徑問(wèn)題.
【分析】先將圓柱的側(cè)面展開(kāi)為一矩形,而矩形的長(zhǎng)就是底面周長(zhǎng)的一半,高就是圓柱的高,再根據(jù)勾股定理就可以求出其值.
【解答】解:展開(kāi)圓柱的側(cè)面如圖,根據(jù)兩點(diǎn)之間線段最短就可以得知AB最短.
由題意,得AC=3×16÷2=24,
在Rt△ABC中,由勾股定理,得
AB===30cm.
故選B.
【點(diǎn)評(píng)】本題考查了圓柱側(cè)面展開(kāi)圖的運(yùn)用,兩點(diǎn)之間線段最短的運(yùn)用,勾股定理的運(yùn)用.在解答時(shí)將圓柱的側(cè)面展開(kāi)是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:
來(lái)源: 題型:已知,如圖△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連接DH與BE相交于點(diǎn)G,某同學(xué)分析圖形后得出以下結(jié)論:①DH⊥BC;②CE=;③△AEB≌△CEB;④△BDF≌△CDA.上述結(jié)論一定正確的是( )
A.①③ B.③④ C.①③④ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
探究:
(1)如圖①,∠1+∠2與∠B+∠C有什么關(guān)系?為什么?
(2)把圖①△ABC沿DE折疊,得到圖②,填空:∠1+∠2__________∠B+∠C(填“>”“<”“=”),當(dāng)∠A=40°時(shí),∠B+∠C+∠1+∠2=__________;
(3)如圖③,是由圖①的△ABC沿DE折疊得到的,如果∠A=30°,則x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣__________=__________,猜想∠BDA+∠CEA與∠A的關(guān)系為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為__________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,△ABC中,∠ACB=90°,D為AB上一點(diǎn),過(guò)D點(diǎn)作AB的垂線,交AC于E,交BC的延長(zhǎng)線于F.
(1)∠1與∠B有什么關(guān)系?說(shuō)明理由.
(2)若BC=BD,請(qǐng)你探索AB與FB的數(shù)量關(guān)系,并且說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直角△ABD中,∠A=90°,AB=3cm,AD=9cm,將此三角形折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EO,則△EOD的面積為__________cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(2015?樂(lè)山)如圖,將矩形紙片ABCD沿對(duì)角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com