【題目】如圖,方格紙中每個小正方形的邊長均為1,△ABC的三個頂點均在小正方形的頂點上.
(1)請在方格紙上建立平面直角坐標系,使點A、C的坐標分別為(2,3)、(6,2),并寫出點B的坐標;
(2)以原點O為位似中心,在第一象限內將△ABC放大,相似比為2,畫出放大后的△A'B'C';
(3)直接寫出B′C′與AC的交點坐標.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.
(1)求圓弧所在的圓的半徑r的長;
(2)當洪水泛濫到跨度只有30米時,要采取緊急措施,若拱頂離水面只有4米,即PE=4米時,是否要采取緊急措施?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x軸負半軸相交于點A,與y軸正半軸相交于點B,,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點E.
(1)求拋物線的解析式;
(2)若拋物線與x軸正半軸交于點F,設點D的橫坐標為x,四邊形FAEB的面積為S,請寫出S與x的函數(shù)關系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標;如果不存在,請說明理由.
(3)連接BE,是否存在點D,使得和相似?若存在,求出點D的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=6,E為射線BC上一動點(不與C重合),△CDE的外接圓交AE于P,若CP=CD,則AP的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD的邊長為2,作正方形AEFG(A,E,F,G四個頂點按逆時針方向排列),連接BE、GD,
(1)如圖①,當點E在正方形ABCD外時,線段BE與線段DG有何關系?直接寫出結論;
(2)如圖②,當點E在線段BD的延長線上,射線BA與線段DG交于點M,且DG=2DM時,求邊AG的長;
(3)如圖③,當點E在正方形ABCD的邊CD所在的直線上,直線AB與直線DG交于點M,且DG=4DM時,直接寫出邊AG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸、軸交于兩點,過作垂直于軸于點.已知.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)觀察圖象:當時,比較.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于封閉的平面圖形,如果圖形上或圖形內的點S到圖形上的任意一點P之間的線段都在圖形內或圖形上,那么這樣的點S稱為“亮點”.如圖,對于封閉圖形ABCDE,S1是“亮點”,S2不是“亮點”,如果AB∥DE,AE∥DC,AB=2,AE=1,∠B=∠C=60°,那么該圖形中所有“亮點”組成的圖形的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B.
(1)求證:AC·CD=CP·BP;
(2)若AB=10,BC=12,當PD∥AB時,求BP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學藝術節(jié)期間,學校向學生征集書畫作品,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作品的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,回答下列問題:
(1)楊老師采用的調查方式是 (填“普查”或“抽樣調查”);
(2)請你將條形統(tǒng)計圖補充完整,并估計全校共征集多少件作品?
(3)如果全校征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學生性別相同的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com