【題目】甲、乙兩家櫻桃采摘園的品質(zhì)相同,銷售價(jià)格也相同,“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為y1(元),在乙采摘園所需總費(fèi)用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關(guān)系.
(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克元;
(2)求y1、y2與x的函數(shù)表達(dá)式;
(3)在圖中畫出y1與x的函數(shù)圖象,若某人想在“五一期間”采摘櫻桃25千克,那么甲、乙哪個(gè)采摘園較為優(yōu)惠?請(qǐng)說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=6,第一次平移長方形ABCD沿AB的方向向右平移5個(gè)單位,得到長方形A1B1C1D1,第2次平移將長方形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位,得到長方形A2B2C2D2…,第n次平移將長方形An﹣1Bn﹣1Cn﹣1Dn﹣1沿An﹣1Bn﹣1的方向平移5個(gè)單位,得到長方形AnBnCnDn(n>2),若ABn的長度為56,則n=_.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8 …,頂點(diǎn)依次為A1,A2,A3,A4,A5,…,則頂點(diǎn)A55的坐標(biāo)是( )
A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下面對(duì)話,可知懶羊羊所買的筆和筆記本的;
價(jià)格分別為( )
喜羊羊:懶羊羊,你上周買的筆和筆記本的價(jià)格是多少?
懶羊羊:哦,我忘了,只記得先后買了兩次,第一次買了5支筆和10本筆記本共花了42元錢,第二次買了10支筆和5本筆記本共花了30元錢。
A. 0.8元/支,2.6元/本 B. 0.8元/支,3.6元/本
C. 1.2元/支,3.6元/本 D. 1.6元/支,3.2元/本
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組
請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)同學(xué)到距學(xué)校6千米的郊外秋游,一部分同學(xué)步行,另一部分同學(xué)騎自行車,沿相同路線前往,如圖,L1L2分別表示步行和騎車的同學(xué)前往目的地所走的路程y(千米)與所用時(shí)間x(分鐘)之間的函數(shù)關(guān)系,則以下判斷錯(cuò)誤的是( )
A. 騎車的同學(xué)比步行的同學(xué)晚出發(fā)30分鐘
B. 騎車的同學(xué)和步行的同學(xué)同時(shí)到達(dá)目的地
C. 騎車的同學(xué)從出發(fā)到追上步行的同學(xué)用了20分鐘
D. 步行的速度是6千米/小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是⊙O的直徑,MN=4,∠AMN=40°,點(diǎn)B為弧AN的中點(diǎn),點(diǎn)P是直徑MN上的一個(gè)動(dòng)點(diǎn),則PA+PB的最小值為( )
A.2
B.2
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,AD平分∠BDC.
(1)求證:∠BAD=∠BDA;
(2)若AD⊥AC,∠C=700,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(0,2),B(2,2),C(﹣1,﹣2),拋物線F:y=x2﹣2mx+m2﹣2與直線x=﹣2交于點(diǎn)P.
(1)當(dāng)拋物線F經(jīng)過點(diǎn)C時(shí),求它的表達(dá)式;
(2)設(shè)點(diǎn)P的縱坐標(biāo)為yP , 求yP的最小值,此時(shí)拋物線F上有兩點(diǎn)(x1 , y1),(x2 , y2),且x1<x2≤﹣2,比較y1與y2的大;
(3)當(dāng)拋物線F與線段AB有公共點(diǎn)時(shí),直接寫出m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com