若四邊形ABCD的四個(gè)內(nèi)角之比為∠A︰∠B︰∠C︰∠D=5︰5︰4︰6,則這個(gè)四邊形ABCD為()

A.梯形   B.等腰梯形   C.平行四邊形   D.直角梯形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探究問(wèn)題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點(diǎn)P,使它到三角形頂點(diǎn)的距離之和最小,則稱點(diǎn)P為△ABC的費(fèi)馬點(diǎn),此時(shí)PA+PB+PC的值為△ABC的費(fèi)馬距離;
②如圖(B),若四邊形ABCD的四個(gè)頂點(diǎn)在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;
精英家教網(wǎng)
(2)知識(shí)遷移:
①請(qǐng)你利用托勒密定理,解決如下問(wèn)題:
如圖(C),已知點(diǎn)P為等邊△ABC外接圓的
BC
上任意一點(diǎn).求證:PB+PC=PA;
②根據(jù)(2)①的結(jié)論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長(zhǎng)作等邊△BCD及其外接圓;
第二步:在
BC
上任取一點(diǎn)P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+
 
;
第三步:請(qǐng)你根據(jù)(1)①中定義,在圖(D)中找出△ABC的費(fèi)馬點(diǎn)P,并請(qǐng)指出線段
 
的長(zhǎng)度即為△ABC的費(fèi)馬距離.
精英家教網(wǎng)
(3)知識(shí)應(yīng)用:
2010年4月,我國(guó)西南地區(qū)出現(xiàn)了罕見的持續(xù)干旱現(xiàn)象,許多村莊出現(xiàn)了人、畜飲水困難,為解決老百姓的飲水問(wèn)題,解放軍某部來(lái)到云南某地打井取水.
已知三村莊A、B、C構(gòu)成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現(xiàn)選取一點(diǎn)P打水井,使從水井P到三村莊A、B、C所鋪設(shè)的輸水管總長(zhǎng)度最小,求輸水管總長(zhǎng)度的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

探究問(wèn)題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點(diǎn)P,使它到三角形頂點(diǎn)的距離之和最小,則稱點(diǎn)P為△ABC的費(fèi)馬點(diǎn),此時(shí)PA+PB+PC的值為△ABC的費(fèi)馬距離;
②如圖(B),若四邊形ABCD的四個(gè)頂點(diǎn)在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;

(2)知識(shí)遷移:
①請(qǐng)你利用托勒密定理,解決如下問(wèn)題:
如圖(C),已知點(diǎn)P為等邊△ABC外接圓的數(shù)學(xué)公式上任意一點(diǎn).求證:PB+PC=PA;
②根據(jù)(2)①的結(jié)論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長(zhǎng)作等邊△BCD及其外接圓;
第二步:在數(shù)學(xué)公式上任取一點(diǎn)P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+______;
第三步:請(qǐng)你根據(jù)(1)①中定義,在圖(D)中找出△ABC的費(fèi)馬點(diǎn)P,并請(qǐng)指出線段______的長(zhǎng)度即為△ABC的費(fèi)馬距離.

(3)知識(shí)應(yīng)用:
2010年4月,我國(guó)西南地區(qū)出現(xiàn)了罕見的持續(xù)干旱現(xiàn)象,許多村莊出現(xiàn)了人、畜飲水困難,為解決老百姓的飲水問(wèn)題,解放軍某部來(lái)到云南某地打井取水.
已知三村莊A、B、C構(gòu)成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現(xiàn)選取一點(diǎn)P打水井,使從水井P到三村莊A、B、C所鋪設(shè)的輸水管總長(zhǎng)度最小,求輸水管總長(zhǎng)度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第1章《解直角三角形》中考題集(27):1.3 解直角三角形(解析版) 題型:解答題

探究問(wèn)題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點(diǎn)P,使它到三角形頂點(diǎn)的距離之和最小,則稱點(diǎn)P為△ABC的費(fèi)馬點(diǎn),此時(shí)PA+PB+PC的值為△ABC的費(fèi)馬距離;
②如圖(B),若四邊形ABCD的四個(gè)頂點(diǎn)在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;

(2)知識(shí)遷移:
①請(qǐng)你利用托勒密定理,解決如下問(wèn)題:
如圖(C),已知點(diǎn)P為等邊△ABC外接圓的上任意一點(diǎn).求證:PB+PC=PA;
②根據(jù)(2)①的結(jié)論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長(zhǎng)作等邊△BCD及其外接圓;
第二步:在上任取一點(diǎn)P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+______;
第三步:請(qǐng)你根據(jù)(1)①中定義,在圖(D)中找出△ABC的費(fèi)馬點(diǎn)P,并請(qǐng)指出線段______的長(zhǎng)度即為△ABC的費(fèi)馬距離.

(3)知識(shí)應(yīng)用:
2010年4月,我國(guó)西南地區(qū)出現(xiàn)了罕見的持續(xù)干旱現(xiàn)象,許多村莊出現(xiàn)了人、畜飲水困難,為解決老百姓的飲水問(wèn)題,解放軍某部來(lái)到云南某地打井取水.
已知三村莊A、B、C構(gòu)成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現(xiàn)選取一點(diǎn)P打水井,使從水井P到三村莊A、B、C所鋪設(shè)的輸水管總長(zhǎng)度最小,求輸水管總長(zhǎng)度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省宿遷市青華中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷(B卷)(解析版) 題型:解答題

探究問(wèn)題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點(diǎn)P,使它到三角形頂點(diǎn)的距離之和最小,則稱點(diǎn)P為△ABC的費(fèi)馬點(diǎn),此時(shí)PA+PB+PC的值為△ABC的費(fèi)馬距離;
②如圖(B),若四邊形ABCD的四個(gè)頂點(diǎn)在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;

(2)知識(shí)遷移:
①請(qǐng)你利用托勒密定理,解決如下問(wèn)題:
如圖(C),已知點(diǎn)P為等邊△ABC外接圓的上任意一點(diǎn).求證:PB+PC=PA;
②根據(jù)(2)①的結(jié)論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長(zhǎng)作等邊△BCD及其外接圓;
第二步:在上任取一點(diǎn)P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+______;
第三步:請(qǐng)你根據(jù)(1)①中定義,在圖(D)中找出△ABC的費(fèi)馬點(diǎn)P,并請(qǐng)指出線段______的長(zhǎng)度即為△ABC的費(fèi)馬距離.

(3)知識(shí)應(yīng)用:
2010年4月,我國(guó)西南地區(qū)出現(xiàn)了罕見的持續(xù)干旱現(xiàn)象,許多村莊出現(xiàn)了人、畜飲水困難,為解決老百姓的飲水問(wèn)題,解放軍某部來(lái)到云南某地打井取水.
已知三村莊A、B、C構(gòu)成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現(xiàn)選取一點(diǎn)P打水井,使從水井P到三村莊A、B、C所鋪設(shè)的輸水管總長(zhǎng)度最小,求輸水管總長(zhǎng)度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2010•永州)探究問(wèn)題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點(diǎn)P,使它到三角形頂點(diǎn)的距離之和最小,則稱點(diǎn)P為△ABC的費(fèi)馬點(diǎn),此時(shí)PA+PB+PC的值為△ABC的費(fèi)馬距離;
②如圖(B),若四邊形ABCD的四個(gè)頂點(diǎn)在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;

(2)知識(shí)遷移:
①請(qǐng)你利用托勒密定理,解決如下問(wèn)題:
如圖(C),已知點(diǎn)P為等邊△ABC外接圓的上任意一點(diǎn).求證:PB+PC=PA;
②根據(jù)(2)①的結(jié)論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長(zhǎng)作等邊△BCD及其外接圓;
第二步:在上任取一點(diǎn)P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+______;
第三步:請(qǐng)你根據(jù)(1)①中定義,在圖(D)中找出△ABC的費(fèi)馬點(diǎn)P,并請(qǐng)指出線段______的長(zhǎng)度即為△ABC的費(fèi)馬距離.

(3)知識(shí)應(yīng)用:
2010年4月,我國(guó)西南地區(qū)出現(xiàn)了罕見的持續(xù)干旱現(xiàn)象,許多村莊出現(xiàn)了人、畜飲水困難,為解決老百姓的飲水問(wèn)題,解放軍某部來(lái)到云南某地打井取水.
已知三村莊A、B、C構(gòu)成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現(xiàn)選取一點(diǎn)P打水井,使從水井P到三村莊A、B、C所鋪設(shè)的輸水管總長(zhǎng)度最小,求輸水管總長(zhǎng)度的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案