【題目】如圖,BD=BE,∠D=∠E,∠ABC=∠DBE=90°,BF⊥AE,且點(diǎn)A,C,E在同一條直線上.
(1)求證:△DAB≌△ECB;
(2)若AD=3,AF=1,求BE的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
問題:已知方程x2+x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x,所以x=,把x=,代入已知方程,
得()2 +﹣1=0.
化簡,得y2+2y﹣4=0,
故所求方程為y2+2y﹣4=0
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+2x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為 ;
(2)已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個不等于零的實(shí)數(shù)根,求一個一元二次方程,使它的根分別是已知方程根的倒數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ADB=∠ACB=90°,AC與BD相交于點(diǎn)O,且OA=OB,下列結(jié)論:①AD=BC;②AC=BD;③∠CDA=∠DCB;④CD∥AB,其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地火車站及周圍的簡單平面圖.(每個小正方形的邊長代表1千米.)
(1)請以火車站所在的位置為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,并表示出體育場A、超市B市場C、文化宮D的坐標(biāo).
(2)在這個坐標(biāo)平面內(nèi),連接OA,若∠AOB的度數(shù)大約為53°,請利用所給數(shù)據(jù)描述體育場相對于火車站的位置.
(3)要想用第(2)問的方法描述文化宮在火車站的什么位置,需要測量哪些數(shù)據(jù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形的邊長為,點(diǎn),,,分別在正方形的四條邊上,且,則四邊形的形狀為________,它的面積的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)是正比例函數(shù)與反比例函數(shù)的圖象在第一象限的交點(diǎn),軸,垂足為點(diǎn),的面積是2.
(1)求的值以及這兩個函數(shù)的解析式;
(2)若點(diǎn)在軸上,且是以為腰的等腰三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場投入13 800元資金購進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價和銷售價如表所示:
類別/單價 | 成本價 | 銷售價(元/箱) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場購進(jìn)甲、乙兩種礦泉水各多少箱?
(2)全部售完500箱礦泉水,該商場共獲得利潤多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸相交于點(diǎn)、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸相交于點(diǎn),頂點(diǎn)為.
直接寫出、、三點(diǎn)的坐標(biāo)和拋物線的對稱軸.
連接、,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程:M:ax2+bx+c=0; N:cx2+bx+a=0,其中ac≠0,a≠c,以下四個結(jié)論:
①如果方程M有兩個不相等的實(shí)數(shù)根,那么方程N也有兩個不相等的實(shí)數(shù)根;
②如果方程M有兩根符號相同,那么方程N的兩根符號也相同;
③如果m是方程M的一個根,那么是方程N的一個根;
④如果方程M和方程N有一個相同的根,那么這個根必是x=1
正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com