【題目】閱讀與探究

我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.請結(jié)合上述閱讀材料,解決下列問題:

在我們所學過的特殊四邊形中,是勾股四邊形的是________ (任寫一種即可)

1、圖2均為的正方形網(wǎng)格,點均在格點上,請在圖中標出格點,連接,使得四邊形符合下列要求:圖1中的四邊形是勾股四邊形,并且是軸對稱圖形;圖2中的四邊形是勾股四邊形且對角線相等,但不是軸對稱圖形.

【答案】1)矩形,正方形(任寫一種即可);(2)詳見解析

【解析】

1)直接利用勾股四邊形的定義得出答案;

2)根據(jù)要求分別得出符合題意的圖形.

1)矩形,正方形(任寫一種即可);

2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AEBC,AFCD,垂足分別為E,F(xiàn),且BE=DF.

(1)求證:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市公共自行車服務公司調(diào)查某中學學生對公共自行車的了解情況,隨機抽取部分學生進行問卷,結(jié)果分非常了解、比較了解、一般了解、不了解四種類型,分別記為A、B、C、D.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.

(1)本次問卷共隨機調(diào)查了 名學生,扇形統(tǒng)計圖中

(2)請根據(jù)數(shù)據(jù)信息補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中“D類型所對應的圓心角.

(3)若該校有1000名學生,估計選擇非常了解、比較了解共約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,延長平行四邊形的邊到點,使,連接于點

1)求證:

2)連接,若,求證四邊形是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】構(gòu)造圖形解題,它的應用十分廣泛,特別是有些技巧性很強的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無措,難以下手,這時,如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過構(gòu)造適合的幾何圖形,將會得到事半功倍的效果,下面介紹兩則實例:

實例一:1876年,美國總統(tǒng)伽非爾德利用實例一圖證明了勾股定理:由

S四邊形ABCD=SABC+SADE+SABE,化簡得:

實例二:歐幾里得的《幾何原本》記載,關(guān)于x的方程的圖解法是:

RtABC,使∠ABC=90°,BC=AC=,再在斜邊AB上截取BD,則AD的長就是該方程的一個正根(如實例二圖)

請根據(jù)以上閱讀材料回答下面的問題:

(1)如圖1,請利用圖形中面積的等量關(guān)系,寫出甲圖要證明的數(shù)學公式是 ,乙圖要證明的數(shù)學公式是

(2)如圖2,若2-8是關(guān)于x的方程x2+6x16的兩個根,按照實例二的方式構(gòu)造RtABC,連接CD,求CD的長;

(3)x,yz都為正數(shù),且x2+y2z2,請用構(gòu)造圖形的方法求的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于A、BAB左側(cè))兩點, 一次函數(shù)y=-x+4與坐標軸分別交于點CD,與拋物線交于點MN,其中點M的橫坐標是.

(1)求出點CD的坐標;

(2)求拋物線的表達式以及點A、B的坐標;

(3)在平面內(nèi)存在動點PP不與A,B重合),滿足∠APB為直角,動點P到直線CD的距離是否有最小值,如果有,請直接寫出這個最小值的結(jié)果;如果沒有,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點在邊上,,

1)求證:;

2)延長至點,使,連接,.判斷線段的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】201910月,某市高質(zhì)量通過全國文明城市測評,該成績的取得得益于領(lǐng)導高度重視(A)、整改措施有效(B)、市民積極參與(C)、市民文明素質(zhì)(D).某數(shù)學興趣小組隨機走訪了部分市民,對這四項認可度進行調(diào)查(只選填最認可的一項),并將調(diào)查結(jié)果制作了如下兩幅不完整的統(tǒng)計圖.

1)請補全D項的條形圖;

2)已知B、C兩項條形圖的高度之比為35

①選B、C兩項的人數(shù)各為多少個?

②求α的度數(shù),

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x+4

1)用配方法確定它的頂點坐標、對稱軸;

2x取何值時,yx增大而減小?

3x取何值時,拋物線在x軸上方?

查看答案和解析>>

同步練習冊答案