【題目】如圖,已知中,,厘米,厘米,點為的中點.如果點在線段上以每秒2厘米的速度由點向點運動,同時,點在線段上以每秒厘米的速度由點向點運動,設(shè)運動時間為(秒).
(1)用含的代數(shù)式表示的長度;
(2)若點、的運動速度相等,經(jīng)過1秒后,與是否全等,請說明理由;
(3)若點、的運動速度不相等,當點的運動速度為多少時,能夠使與全等?
【答案】(1)6-2t;(2)和全等;(3)厘米/秒.
【解析】
(1)先表示出BP,根據(jù)PC=BC-BP,可得出答案;
(2)根據(jù)時間和速度分別求得兩個三角形中的邊的長,根據(jù)SAS判定兩個三角形全等.
(3)根據(jù)全等三角形應(yīng)滿足的條件探求邊之間的關(guān)系,再根據(jù)路程=速度×時間公式,先求得點P運動的時間,再求得點Q的運動速度;
(1),則.
(2)和全等
理由:∵秒,
∴厘米,
∴厘米.
∵厘米,點為的中點,
∴厘米,
∴.
在和中,,,,
∴≌(SAS).
(3)∵點、的運動速度不相等,
∴.
又∵≌,,
∴,,
∴點,點運動的時間秒,
∴厘米/秒.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①所示,將繞頂點按逆時針方向旋轉(zhuǎn)角,得到,,分別與、交于點、,與相交于點.求證:;
(2)如圖②所示,和是全等的等腰直角三角形,,與、分別交于點、,請說明,,之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一次函數(shù)y=kx+m的圖象經(jīng)過二次函數(shù)y=ax2+bx+c的頂點,我們則稱這兩個函數(shù)為“丘比特函數(shù)組”
(1)請判斷一次函數(shù)y=﹣3x+5和二次函數(shù)y=x2﹣4x+5是否為“丘比特函數(shù)組”,并說明理由.
(2)若一次函數(shù)y=x+2和二次函數(shù)y=ax2+bx+c為“丘比特函數(shù)組”,已知二次函數(shù)y=ax2+bx+c頂點在二次函數(shù)y=2x2﹣3x﹣4圖象上并且二次函數(shù)y=ax2+bx+c經(jīng)過一次函數(shù)y=x+2與y軸的交點,求二次函數(shù)y=ax2+bx+c的解析式;
(3)當﹣3≤x≤﹣1時,二次函數(shù)y=x2﹣2x﹣4的最小值為a,若“丘比特函數(shù)組”中的一次函數(shù)y=2x+3和二次函數(shù)y=ax2+bx+c(b、c為參數(shù))相交于PQ兩點請問PQ的長度為定值嗎?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,MN是⊙O的直徑,作AB⊥MN,垂足為點D,連接AM,AN,點C為弧AN上一點.且弧AC=弧AM,連接CM,交AB于點E,交AN于點F,現(xiàn)給出以下結(jié)論:
①AD=BD;②∠MAN=90°;③弧AM =弧BM ;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正確結(jié)論的序號是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)
如圖,點E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點),在建立的平面直角坐標系中,△ABC繞旋轉(zhuǎn)中心P逆時針旋轉(zhuǎn)90°后得到△A1B1C1.
(1)在圖中標示出旋轉(zhuǎn)中心P,并寫出它的坐標;
(2)以原點O為位似中心,將△A1B1C1作位似變換且放大到原來的兩倍,得到△A2B2C2,在圖中畫出△A2B2C2,并寫出C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的△ABC就是格點三角形,建立如圖所示的平面直角坐標系,點C的坐標為(0,﹣1).
(1)在如圖的方格紙中把△ABC以點O為位似中心擴大,使放大前后的位似比為1:2,畫出△A1B1C1(△ABC與△A1B1C1在位似中心O點的兩側(cè),A,B,C的對應(yīng)點分別是A1,B1,C1).
(2)利用方格紙標出△A1B1C1外接圓的圓心P,P點坐標是 ,⊙P的半徑= .(保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com