【題目】如圖,菱形ABCD的邊長為6,∠BAD=120°,點EAB的中點,點FAC上的一動點,則EF+BF的最小值是__________

【答案】

【解析】

首先連接DB,DE,設(shè)DEACM,連接MBDF.證明只有點F運動到點M時,EF+BF取最小值,再根據(jù)菱形的性質(zhì)、勾股定理求得最小值.

連接DB,DE,設(shè)DEACM,連接MBDF,延長BA,DHBAH,

∵四邊形ABCD是菱形,

AC,BD互相垂直平分,

∴點B關(guān)于AC的對稱點為D

FD=FB,

FE+FB=FE+FD≥DE

只有當(dāng)點F運動到點M時,取等號(兩點之間線段最短),

ABD中,AD=AB,∠DAB=120°,

∴∠HAD=60°

DHAB,

AH=AD,DH=AD,

∵菱形ABCD的邊長為6EAB的中點,

AE=3,AH=3,

EH=6,DH=,

RtEHD中,DE=

EF+BF的最小值為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個函數(shù),自變量xa時,函數(shù)值y也等于a,我們稱a為這個函數(shù)的不動點.如果二次函數(shù)yx2+2x+c有兩個相異的不動點x1、x2,且x11x2,則c的取值范圍是( )

A. c<﹣3B. c<﹣2C. cD. c1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩把大小不同、含30度角的三角板如圖放置,如圖,若AO2,點N在線段OD上,且NO1,點P是線段AB上的一個動點,將COD固定,AOB繞點O逆時針旋轉(zhuǎn)的過程中,線段PN長度的最大值是_____;最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中點,,以為頂點在第一象限內(nèi)作正方形.反比例函數(shù)、分別經(jīng)過、兩點(1)如圖2,過、兩點分別作、軸的平行線得矩形,現(xiàn)將點沿的圖象向右運動,矩形隨之平移;

試求當(dāng)點落在的圖象上時點的坐標(biāo)_____________.

設(shè)平移后點的橫坐標(biāo)為,矩形的邊的圖象均無公共點,請直接寫出的取值范圍____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市雨污分流工程中,甲、乙兩個工程隊共同承擔(dān)茅洲河某段720米河道的清淤任務(wù),已知甲隊每天能完成的長度是乙隊每天能完成長度的2倍,且甲工程隊清理300米河道所用的時間比乙工程隊清理200米河道所用的時間少5天.

1)求甲、乙兩工程隊每天各能完成多少米的清淤任務(wù);

2)若甲隊每天清淤費用為2萬元,乙隊每天清淤費用為0.8萬元,要使這次清淤的總費用不超過60萬元,則至少應(yīng)安排乙工程隊清淤多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)實踐小組想利用鏡子的反射測量池塘邊一棵樹的高度AB.測量和計算的部分步驟如下:

①如圖,樹與地面垂直,在地面上的點C處放置一塊鏡子,小明站在BC的延長線上,當(dāng)小明在鏡子中剛好看到樹的頂點A時,測得小明到鏡子的距離CD2米,小明的眼睛E到地面的距離ED1.5米;

②將鏡子從點C沿BC的延長線向后移動10米到點F處,小明向后移動到點H處時,小明的眼睛G又剛好在鏡子中看到樹的頂點A,這時測得小明到鏡子的距離FH3米;

③計算樹的高度AB;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】5G時代即將來臨,湖北省提出“建成全國領(lǐng)先、中部一流5G網(wǎng)絡(luò)”的戰(zhàn)略目標(biāo).據(jù)統(tǒng)計,目前湖北5G基站的數(shù)量有1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬座.

(1)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率;

(2)2023年保持前兩年5G基站數(shù)量的年平均增長率不變,到2023年底,全省5G基站數(shù)量能否超過29萬座?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD2.將∠A向內(nèi)翻折,點A落在BC上,記為A,折痕為DE.若將∠B沿EA向內(nèi)翻折,點B恰好落在DE上,記為B,則AB____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某二次函數(shù)的圖象是一條頂點為P(4-4)的拋物線,它經(jīng)過原點和點A,它的對稱軸交線段

OA于點M.點N在對移軸上,且點M、N關(guān)于點P對稱,連接AN,ON

1)求此二次函數(shù)的解析式:

2)若點A的坐標(biāo)是(6-3).,請直接寫出MN的長

3)若點A在拋物線的對稱軸右側(cè)運動時,則∠ANM與∠ONM有什么數(shù)量關(guān)系?并證明.

查看答案和解析>>

同步練習(xí)冊答案