(2010•內(nèi)江)如圖,在Rt△ABC中,∠C=90°,點(diǎn)E在斜邊AB上,以AE為直徑的⊙O與BC相切于點(diǎn)D.
(1)求證:AD平分∠BAC.
(2)若AC=3,AE=4.
①求AD的值;②求圖中陰影部分的面積.

【答案】分析:(1)連接DE,OD.利用弦切角定理,直徑所對(duì)的圓周角是直角,等角的余角相等證明∠DAO=∠CAD,進(jìn)而得出結(jié)論;
(2)由三角形相似可以算出AD,陰影部分的面積等于扇形的面積-三角形的面積.
解答:(1)證明:連接DE,OD.
∵BC相切⊙O于點(diǎn)D,
∴∠CDA=∠AED.(1分)
AE為直徑,∠ADE=90°,
AC⊥BC,∠ACD=90°,
∴∠DAO=∠CAD,
∴AD平分∠BAC.

(2)解:①∵AE為直徑,
∴∠ADE=∠C=90°.
又由(1)知∠DAO=∠CAD,
∴△ADE∽△ACD,

∵AC=3,AE=4,
,

②在Rt△ADE中,
∴∠DAE=30°.
∴∠AOD=120°,DE=2.
==
∴S陰影=S扇形AOD-S△AOD=
點(diǎn)評(píng):本題主要考查扇形面積的計(jì)算和弦切角定理,三角形相似的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•內(nèi)江)如圖,拋物線y=mx2-2mx-3m(m>0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)請(qǐng)求出拋物線頂點(diǎn)M的坐標(biāo)(用含m的代數(shù)式表示),A、B兩點(diǎn)的坐標(biāo);
(2)經(jīng)探究可知,△BCM與△ABC的面積比不變,試求出這個(gè)比值;
(3)是否存在使△BCM為直角三角形的拋物線?若存在,請(qǐng)求出;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省內(nèi)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•內(nèi)江)如圖,拋物線y=mx2-2mx-3m(m>0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)請(qǐng)求出拋物線頂點(diǎn)M的坐標(biāo)(用含m的代數(shù)式表示),A、B兩點(diǎn)的坐標(biāo);
(2)經(jīng)探究可知,△BCM與△ABC的面積比不變,試求出這個(gè)比值;
(3)是否存在使△BCM為直角三角形的拋物線?若存在,請(qǐng)求出;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省內(nèi)江市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•內(nèi)江)如圖,在△ABC中,AB=AC,點(diǎn)E、F分別在AB和AC上,CE與BF相交于點(diǎn)D,若AE=CF,D為BF的中點(diǎn),AE:AF的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省內(nèi)江市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•內(nèi)江)如圖,梯形ABCD中,AD∥BC,點(diǎn)E在BC上,AE=BE,點(diǎn)F是CD的中點(diǎn),且AF⊥AB,若AD=2.7,AF=4,AB=6,則CE的長為( )

A.
B.
C.2.5
D.2.3

查看答案和解析>>

同步練習(xí)冊(cè)答案