【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),連接PB、AB,∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2 ,求BC的長(zhǎng).

【答案】
(1)證明:連接OB,如圖所示:

∵AC是⊙O的直徑,

∴∠ABC=90°,

∴∠C+∠BAC=90°,

∵OA=OB,

∴∠BAC=∠OBA,

∵∠PBA=∠C,

∴∠PBA+∠OBA=90°,

即PB⊥OB,

∴PB是⊙O的切線


(2)解:∵⊙O的半徑為2

∴OB=2 ,AC=4

∵OP∥BC,

∴∠C=∠BOP,

又∵∠ABC=∠PBO=90°,

∴△ABC∽△PBO,

,

,

∴BC=2


【解析】(1)連接OB,由圓周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,證出∠PBA+∠OBA=90°,即可得出結(jié)論;(2)證明△ABC∽△PBO,得出對(duì)應(yīng)邊成比例,即可求出BC的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】多好佳水果店在批發(fā)市場(chǎng)購(gòu)買(mǎi)某種水果銷(xiāo)售,第一次用1500元購(gòu)進(jìn)若干千克,并以每千克9元出售,很快售完.由于水果暢銷(xiāo),第二次購(gòu)買(mǎi)時(shí),每千克的進(jìn)價(jià)比第一次提高了10%,用1694元所購(gòu)買(mǎi)的水果比第一次多20千克,以每千克10元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價(jià)45%售完剩余的水果.

(1)第一次水果的進(jìn)價(jià)是每千克多少元?

(2)該水果店在這兩次銷(xiāo)售中,總體上是盈利還是虧損?盈利或虧損了多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB、AC邊的垂直平分線分別交BC邊于點(diǎn)M、N.

(1)如圖①,若△AMN是等邊三角形,則∠BAC=   °;

(2)如圖②,若∠BAC=135°,求證:BM2+CN2=MN2

(3)如圖③,ABC的平分線BPAC邊的垂直平分線相交于點(diǎn)P,過(guò)點(diǎn)PPH垂直BA的延長(zhǎng)線于點(diǎn)H.若AB=4,CB=10,求AH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點(diǎn)A,B的坐標(biāo)分別為( ,0),(0,1),把Rt△AOB沿著AB對(duì)折得到Rt△AO′B,則點(diǎn)O′的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一串有理數(shù)按下列規(guī)律排列,回答下列問(wèn)題.

(1)A處的數(shù)是正數(shù)還是負(fù)數(shù)?

(2)負(fù)數(shù)排在A、B、C、D中的什么位置?

(3)2 015個(gè)數(shù)是正數(shù)還是負(fù)數(shù)?排在對(duì)應(yīng)于A、B、C、D中的什么位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC外分別以AB,AC為邊作兩個(gè)大小不同的等腰直角三角形ABD和等腰直角三角形ACE,其中∠DAB=∠CAE=90°,AB=AD,AC=AE.連結(jié)DCBE交于F點(diǎn).

(1)請(qǐng)你找出一對(duì)全等的三角形,并加以證明;

(2)直線DC、BE是否互相垂直,請(qǐng)說(shuō)明理由;

(3)求證:∠DFA=∠EFA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C、E分別為△ABD的邊BD、AB上兩點(diǎn),且AE=AD,CE=CD,D=70゜,ECD=150゜,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖數(shù)軸上點(diǎn) A、B 到表示-2 的點(diǎn)的距離都為 6,P 為線段 AB 上任一點(diǎn),C,D 兩點(diǎn)分別從 P,B 同時(shí)向 A 點(diǎn)移動(dòng), C 點(diǎn)運(yùn)動(dòng)速度為每秒 2 個(gè)單位長(zhǎng)度,D 點(diǎn)運(yùn)動(dòng)速度 為每秒 3 個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為 t .

(1)A 點(diǎn)表示數(shù)為 ,B 點(diǎn)表示的數(shù)為 ,AB= .

(2)若 P 點(diǎn)表示的數(shù)是 0,

①運(yùn)動(dòng) 1 秒后,求 CD 的長(zhǎng)度;

②當(dāng) D BP 上運(yùn)動(dòng)時(shí),求線段 AC、CD 之間的數(shù)量關(guān)系式.

(3)若 t=2 秒時(shí),CD=1,請(qǐng)直接寫(xiě)出 P 點(diǎn)表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=30°,BC=2.ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)n度后得到EDC,此時(shí)點(diǎn)D落在AB邊上,斜邊DEAC于點(diǎn)F,則n的大小和圖中陰影部分的面積分別為(

A. 30,2 B. 60,2 C. 60, D. 60,

查看答案和解析>>

同步練習(xí)冊(cè)答案