【題目】如圖,下列條件中不能判定AB∥CD的是( )
A. ∠3=∠4 B. ∠1=∠5 C. ∠4+∠5=180° D. ∠3+∠5=180°
【答案】C
【解析】
根據(jù)同位角相等兩直線平行;內(nèi)錯(cuò)角相等兩直線平行;同旁內(nèi)角互補(bǔ)兩直線平行;可以進(jìn)行判定.
A選項(xiàng),因?yàn)椤?和∠4一組內(nèi)錯(cuò)角,且∠3=∠4,根據(jù)內(nèi)錯(cuò)角相等兩直線平行可以判定AB∥CD,不符合題意,
B選項(xiàng),因?yàn)椤?和∠5 是一組同位角,且∠1=∠5根據(jù)同位角相等兩直線平行可以判定AB∥CD,不符合題意,
C選項(xiàng),因?yàn)椤?和∠5一組鄰補(bǔ)角,所以∠4+∠5=180°不能判定兩直線平行,
D選項(xiàng),因?yàn)椤?和∠5是一組同旁內(nèi)角,且∠3+∠5=180°,根據(jù)根據(jù)同旁內(nèi)角互補(bǔ)兩直線平行可以判定AB∥CD,不符合題意,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某面粉加工廠要加工一批小麥,2臺(tái)大面粉機(jī)和5臺(tái)小面粉機(jī)同時(shí)工作2小時(shí)共加工小麥1.1萬(wàn)斤;3臺(tái)大面粉機(jī)和2臺(tái)小面粉機(jī)同時(shí)工作5小時(shí)共加工小麥3.3萬(wàn)斤.
(1)1臺(tái)大面粉機(jī)和1臺(tái)小面粉機(jī)每小時(shí)各加工小麥多少萬(wàn)斤?
(2)該廠現(xiàn)有9.45萬(wàn)斤小麥需要加工,計(jì)劃使用8臺(tái)大面粉機(jī)和10臺(tái)小面粉機(jī)同時(shí)工作5小時(shí),能否全部加工完?請(qǐng)你幫忙計(jì)算一下.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】百舸競(jìng)渡,激情飛揚(yáng).為紀(jì)念愛(ài)國(guó)詩(shī)人屈原,某市舉行龍舟賽.甲、乙兩支龍舟隊(duì)在比賽時(shí),路程(米)與時(shí)間(分鐘)之間的函數(shù)圖象如圖所示,根據(jù)圖象回答下列問(wèn)題:
最先達(dá)到終點(diǎn)的是________隊(duì),比另一對(duì)早________分鐘到達(dá);
在比賽過(guò)程中,乙隊(duì)在第________分鐘和第________分鐘時(shí)兩次加速;
求在什么時(shí)間范圍內(nèi),甲隊(duì)領(lǐng)先?
相遇前,甲乙兩隊(duì)之間的距離不超過(guò)的時(shí)間范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)(-1,-5),且與正比例函數(shù)y=x的圖象相交于點(diǎn)(2,a),求:
(1)a的值.
(2)k,b的值.
(3)這兩個(gè)函數(shù)圖象與x軸所圍成的三角形的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】乘法公式的探究與應(yīng)用:
(1)如圖甲,邊長(zhǎng)為a的大正方形中有一個(gè)邊長(zhǎng)為b的小正方形,請(qǐng)你寫(xiě)出陰影部分面積是 (寫(xiě)成兩數(shù)平方差的形式)
(2)小穎將陰影部分裁下來(lái),重新拼成一個(gè)長(zhǎng)方形,如圖乙,則長(zhǎng)方形的長(zhǎng)是 ,寬是 ,面積是 (寫(xiě)成多項(xiàng)式乘法的形式).
(3)比較甲乙兩圖陰影部分的面積,可以得到公式 (用式子表達(dá))
(4)運(yùn)用你所得到的公式計(jì)算:10.3×9.7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于的方程有增根,則的值為__________.
【答案】2
【解析】方程兩邊都乘(x2),得
x+x2=a,即a=2x2.
分式方程的增根是x=2,
∵原方程增根為x=2,
∴把x=2代入整式方程,得a=2,
故答案為:2.
點(diǎn)睛:本題考查了分式方程的增根,增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出a的值.
【題型】填空題
【結(jié)束】
17
【題目】反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)(1,6)和(m,-3),則m= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B的坐標(biāo)為(n,1).
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)結(jié)合圖像寫(xiě)出不等式的解集;
(3)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若S△AEB=10,求點(diǎn)E的坐標(biāo).
【答案】(1)y=,y=-x+7(2)0<x<2或x>12(3)點(diǎn)E的坐標(biāo)為(0,5)或(0,9)
【解析】試題分析:(1)把點(diǎn)A的坐標(biāo)代入反比例函數(shù)解析式,求出反比例函數(shù)的解析式,把點(diǎn)B的坐標(biāo)代入已求出的反比例函數(shù)解析式,得出n的值,得出點(diǎn)B的坐標(biāo),再把A、B的坐標(biāo)代入直線,求出k、b的值,從而得出一次函數(shù)的解析式;
(2)設(shè)點(diǎn)E的坐標(biāo)為(0,m),連接AE,BE,先求出點(diǎn)P的坐標(biāo)(0,7),得出PE=|m﹣7|,根據(jù)S△AEB=S△BEP﹣S△AEP=10,求出m的值,從而得出點(diǎn)E的坐標(biāo).
解:(1)把點(diǎn)A(2,6)代入y=,得m=12,則y=.
把點(diǎn)B(n,1)代入y=,得n=12,則點(diǎn)B的坐標(biāo)為(12,1).
由直線y=kx+b過(guò)點(diǎn)A(2,6),點(diǎn)B(12,1),
則所求一次函數(shù)的表達(dá)式為y=﹣x+7.
(2)或;
(3)如圖,直線AB與y軸的交點(diǎn)為P,設(shè)點(diǎn)E的坐標(biāo)為(0,m),連接AE,BE,則點(diǎn)P的坐標(biāo)為(0,7).∴PE=|m﹣7|.
∵S△AEB=S△BEP﹣S△AEP=10,∴×|m﹣7|×(12﹣2)=10.
∴|m﹣7|=2.∴m1=5,m2=9.∴點(diǎn)E的坐標(biāo)為(0,5)或(0,9).
【題型】解答題
【結(jié)束】
26
【題目】太倉(cāng)市為了加快經(jīng)濟(jì)發(fā)展,決定修筑一條沿江高速鐵路,為了使工程提前半年完成,需要將工作效率提高25%。原計(jì)劃完成這項(xiàng)工程需要多少個(gè)月?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)與,保持不動(dòng),且的一邊,另一邊DE與直線OB相交于點(diǎn)F.
若,,解答下列問(wèn)題:
如圖,當(dāng)點(diǎn)E、O、D在同一條直線上,即點(diǎn)O與點(diǎn)F重合,則______;
當(dāng)點(diǎn)E、O、D不在同一條直線上,畫(huà)出圖形并求的度數(shù);
在的前提下,若,,且,請(qǐng)直接寫(xiě)出的度數(shù)用含、的式子表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)是2,D,E分別為AB,AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF=BC連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com