【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點(diǎn)A(3,0),二次函數(shù)圖象的對稱軸是x=1,下列結(jié)論:

①b2>4ac;②ac>0; ③當(dāng)x>1時(shí),yx的增大而減小; ④3a+c>0;⑤任意實(shí)數(shù)m,a+b≥am2+bm.

其中結(jié)論正確的序號是( 。

A. ①②③ B. ①④⑤ C. ③④⑤ D. ①③⑤

【答案】D

【解析】

①∵拋物線與x軸有兩個(gè)交點(diǎn),

方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根,

∴b2﹣4ac>0,即b2>4ac,故正確;

②∵開口向下,與y軸的交點(diǎn)在x軸的上方,

∴a<0,c>0,

∴ac<0,故錯(cuò)誤;

由圖象和二次函數(shù)圖象的對稱軸是x=1,可得當(dāng)x>1時(shí),yx的增大而減小,

故③正確;

④∵二次函數(shù)y=ax2+bx+c過點(diǎn)A (3,0),對稱軸是x=1,

拋物線與x軸的另一交點(diǎn)坐標(biāo)為(﹣1,0),﹣=1,即b=﹣2a,

當(dāng)x=﹣1時(shí),y=0,即a﹣b+c=0,

∴a+2a+c=0,

∴3a+c=0,

故④錯(cuò)誤;

⑤∵二次函數(shù)圖象的對稱軸是x=1,且開口向下,

當(dāng)x=1時(shí),y最大,

任意實(shí)數(shù)m,a+b+c≥am2+bm+c.

即任意實(shí)數(shù)m,a+b≥am2+bm.

故⑤正確;

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把圖中陰影部分的小正方形移動(dòng)一個(gè),使它與其余四個(gè)陰影部分的正方形組成一個(gè)既是軸對稱又是中心對稱的新圖形,這樣的移法,正確的是(  )

A. 6→3 B. 7→16 C. 7→8 D. 6→15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

1)在圖中的點(diǎn)上標(biāo)出相應(yīng)字母A、B、C,并求出ABC的面積;

2)在圖中作出ABC關(guān)于y軸的對稱圖形A1B1C1;

3)寫出點(diǎn)A1B1,C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展唱紅歌比賽活動(dòng),八年級1、2班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(滿分為100分)如圖所示.

(1)根據(jù)統(tǒng)計(jì)圖所給的信息填寫下表;

班級

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

八(1)

85

_____

85

八(2)

_____

80

_____

(2)若八(1)班復(fù)賽成績的方差s12=70,請計(jì)算八(2)班復(fù)賽成績的方差s22,并說明哪個(gè)班級5名選手的復(fù)賽成績更平穩(wěn)一些.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段BC=8,射線CGBC,A為射線CG上一點(diǎn),已知FAABFA=AB,AE平分FAB,E點(diǎn)滿足∠EBA=ABC.

1)求證:ABEAFE.

2)證明:FDBC.

3)求BED的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBCEAB的中點(diǎn),連接DE并延長交CB的延長線于點(diǎn)F,點(diǎn)G在邊BC上,且∠GDF=∠ADF

1)求證:△ADE≌△BFE

2)連接EG,判斷EGDF的位置關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,實(shí)線部分是由正方形,正五邊形和正六邊形疊放在一起形成的,其中正方形和正六邊形的邊長相同,求圖中∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點(diǎn)O為支點(diǎn)的杠桿,在A端用豎直向上的拉力將重為G的物體勻速拉起,當(dāng)杠桿OA水平時(shí),拉力為F;當(dāng)杠桿被拉至OA1時(shí),拉力為F1,過點(diǎn)B1B1C⊥OA,過點(diǎn)A1A1D⊥OA,垂足分別為點(diǎn)C、D①△OB1C∽△OA1D; ②OAOC=OBOD③OCG=ODF1;④F=F1

其中正確的說法有( )

A1個(gè) B2個(gè) C3個(gè) D4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長.

查看答案和解析>>

同步練習(xí)冊答案