【題目】閱讀下列材料:
在學(xué)習(xí)“分式方程及其解法”過程中,老師提出一個問題:若關(guān)于x的分式方程的解為正數(shù),求a的取值范圍?
經(jīng)過獨(dú)立思考與分析后,小明和小聰開始交流解題思路如下:
小明說:解這個關(guān)于x的分式方程,得到方程的解為.由題意可得,所以,問題解決.
小聰說:你考慮的不全面.還必須保證才行.
請回答:_______________的說法是正確的,并說明正確的理由是:__________________.
完成下列問題:
(1)已知關(guān)于x的方程的解為非負(fù)數(shù),求m的取值范圍;
(2)若關(guān)于x的分式方程無解.直接寫出n的取值范圍.
【答案】(1)見解析(2)見解析
【解析】
根據(jù)分式方程解為正數(shù),且分母不為0判斷即可;
(1)分式方程去分母轉(zhuǎn)化為整式方程,由分式方程的解為非負(fù)數(shù)確定出m的范圍即可.
(2) 分式方程去分母轉(zhuǎn)化為整式方程,根據(jù)分式方程無解,得到有增根或整式方程無解,確定出n的范圍即可.
小聰?shù)恼f法是正確的,正確的理由是分式的分母不為0,故,從而.
故答案為:小聰;分式的分母不為0,故,從而.
(1)去分母得:m+x=2x6,
解得:x=m+6,
由分式方程的解為非負(fù)數(shù),得到,且m+6≠3,
解得:且
(2) 分式方程去分母得:32x+nx2=x+3,即(n1)x=2,
由分式方程無解,得到x3=0,即x=3,
代入整式方程得:
當(dāng)n1=0時,整式方程無解,此時n=1,
綜上,n=1或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)先化簡,再求值:(2a- b)2- (a+1- b)(a+1+b)+(a+1)2,其中a=,b=- 2;
(2)已知x- 1=,求代數(shù)式(x+1)2- 4(x+1)+4的值;
(3)先化簡,再求值:2(a+)(a- )- a(a- 6)+6,其中a=- 1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的面積為20,對角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別是AB,CD上的點(diǎn),且AE=DF,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)A、D在y軸正半軸上,點(diǎn)B、C分別在x軸上,CD平分∠ACB,與y軸交于D點(diǎn),∠CAO=90°-∠BDO.
(1)求證:AC=BC:
(2)如圖2,點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)E為AC上一點(diǎn),且∠DEA=∠DBO,求BC+EC的長;
(3)如圖3,過D作DF⊥AC于F點(diǎn),點(diǎn)H為FC上一動點(diǎn),點(diǎn)G為OC上一動點(diǎn),當(dāng)H在FC上移動、點(diǎn)G在OC上移動時,始終滿足∠GDH=∠GDO+∠FDH,試判斷FH、GH、OG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.
(圖3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),分別以直角△ABC的三邊為直徑向外作三個半圓,其面積分別用S1、S2、S3表示,則不難說明S1=S2+S3。(1)如圖(2),分別以直角△ABC三邊為一邊向外作三個正方形,其面積分別用S1、S2、S3表示,那么S1、S2、S3之間有什么關(guān)系?(2)如圖(3),若分別以直角△ABC三邊為一邊向外作三個正三角形,其面積分別用S1、S2、S3表示,試確定S1、S2、S3之間的關(guān)系并加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于點(diǎn)D,DE⊥AB于E.若△ADE的周長為8cm,則AB=_____ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,已知△ABC為等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F。
(1)求證:△ABE≌△CAD;(2)求∠BFD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (k≠0)的圖象交于點(diǎn)A(1,3),B(m,1),與x軸交于點(diǎn)D,直線OA與反比例函數(shù)y= (k≠0)的圖象的另一支交于點(diǎn)C,過點(diǎn)B作直線l垂直于x軸,點(diǎn)E是點(diǎn)D關(guān)于直線l的對稱點(diǎn).
(1)k=;
(2)判斷點(diǎn)B,E,C是否在同一條直線上,并說明理由;
(3)如圖2,已知點(diǎn)F在x軸正半軸上,OF= ,點(diǎn)P是反比例函數(shù)y= (k≠0)的圖象位于第一象限部分上的點(diǎn)(點(diǎn)P在點(diǎn)A的上方),∠ABP=∠EBF,則點(diǎn)P的坐標(biāo)為( , ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個角的差的絕對值等于,就稱這兩個角互為反余角,其中一個角叫做另一個角的反余角,例如,,,,則和互為反余角,其中是的反余角,也是的反余角.
如圖為直線AB上一點(diǎn),于點(diǎn)O,于點(diǎn)O,則的反余角是______,的反余角是______;
若一個角的反余角等于它的補(bǔ)角的,求這個角.
如圖2,O為直線AB上一點(diǎn),,將繞著點(diǎn)O以每秒角的速度逆時針旋轉(zhuǎn)得,同時射線OP從射線OA的位置出發(fā)繞點(diǎn)O以每秒角的速度逆時針旋轉(zhuǎn),當(dāng)射線OP與射線OB重合時旋轉(zhuǎn)同時停止,若設(shè)旋轉(zhuǎn)時間為t秒,求當(dāng)t為何值時,與互為反余角圖中所指的角均為小于平角的角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com