【題目】如圖,小華和小麗兩人玩游戲,她們準(zhǔn)備了A、B兩個(gè)分別被平均分成三個(gè)、四個(gè)扇形的轉(zhuǎn)盤.游戲規(guī)則:小華轉(zhuǎn)動A盤、小麗轉(zhuǎn)動B盤.轉(zhuǎn)動過程中,指針保持不動,如果指針恰好指在分割線上,則重轉(zhuǎn)一次,直到指針指向一個(gè)數(shù)字所在的區(qū)域?yàn)橹梗畠蓚(gè)轉(zhuǎn)盤停止后指針?biāo)竻^(qū)域內(nèi)的數(shù)字之和小于6,小華獲勝.指針?biāo)竻^(qū)域內(nèi)的數(shù)字之和大于6,小麗獲勝.
(1)用樹狀圖或列表法求小華、小麗獲勝的概率;
(2)這個(gè)游戲規(guī)則對雙方公平嗎?請判斷并說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線段CD的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時(shí)刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據(jù)算出電線桿AB的高嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將連續(xù)的奇數(shù),,,...按圖1中的方式排成一個(gè)數(shù)表,用一個(gè)十字框框住個(gè)數(shù),這樣框出的任意個(gè)數(shù)中,四個(gè)分支上的數(shù)分別用、、、表示,如圖2所示。
(1)計(jì)算:若十字框中間的數(shù)為,則______________;
(2)發(fā)現(xiàn):移動十字框,比較與中間的數(shù).猜想:十字框中、、、的和是中間的數(shù)的___________________;
(3)驗(yàn)證:用含的式子表示、、、,并利用整式運(yùn)算驗(yàn)證(2)中猜想的正確性;
(4)應(yīng)用:設(shè),判斷的值能否等于,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中邊AB的垂直平分線分別交BC,AB于點(diǎn)D,E,AE=3cm,△ADC的周長為9cm,則△ABC的周長是( )
A. 10cm B. 12cm C. 15cm D. 17cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵居民節(jié)約用氣,某省決定對天然氣收費(fèi)實(shí)行階梯氣價(jià),階梯氣價(jià)劃分為兩個(gè)檔級:
(1)第一檔氣量為每戶每月30立方米(含30立方米)以內(nèi),執(zhí)行基準(zhǔn)價(jià)格;
(2)第二檔氣量為每戶每月超出30立方米以上部分,執(zhí)行市場調(diào)節(jié)價(jià)格.
小明家5月份用氣35立方米,交費(fèi)112.5元;6月份用氣41立方米,交費(fèi)139.5元,若小明7月份用氣29立方米,則他家應(yīng)交費(fèi)________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多好佳水果店在批發(fā)市場購買某種水果銷售,第一次用1500元購進(jìn)若干千克,并以每千克9元出售,很快售完.由于水果暢銷,第二次購買時(shí),每千克的進(jìn)價(jià)比第一次提高了10%,用1694元所購買的水果比第一次多20千克,以每千克10元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價(jià)45%售完剩余的水果.
(1)第一次水果的進(jìn)價(jià)是每千克多少元?
(2)該水果店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠ACB=90,點(diǎn)D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com