【題目】如圖,以ABC的一邊AB為直徑作⊙O,交AC,BCD,E兩點,若AB=4,BED=120°,點EBD中點,則圖中陰影部分的面積是( 。

A. 4 B. C. D.

【答案】D

【解析】連接OE、OD、AE

∵∠BED=120°

∴∠BAC=60°,

,

BE=ED

OB=OE=OD,

∴△OEB≌△OED

∴∠OEB=OED=60°,

∴∠ABC=BAC=60°

∴△ABC是等邊三角形,

AB=BC=AC=4

AB為直徑,

∴∠AEB=90°BE=EC=BC=2,

OB=OEABC=BAC=60°,OA=OD,

∴△OBE、AOD、ODE、CDE都是等邊三角形,

OB=BE=OE=2OA=OD=AD=2,AOD=BOE=60°

∴∠EOD=180°﹣60°﹣60°=60°,

∴陰影部分的面積是=(扇形BOE的面積﹣三角形BOE面積)+(菱形OECD的面積﹣扇形OED的面積)=三角形CDE的面積=×22=.

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E、FH分別是AB、BC、CD的中點,CE、DF交于G,連接AG、HG.下列結論:①CEDF;②AGAD;③∠CHG=∠DAG;④HGAD.其中正確的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為4,BAD=120°,點E是AB的中點,點F是AC上的一動點,則EF+BF的最小值是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,,求的值.

解:根據算術平方根的定義,

,得,所以……第一步

根據立方根的定義,

,得……第二步

由①②解得……第三步

代入中,得……第四步

1)以上解題過程存在錯誤,請指出錯在哪些步驟,并說明錯誤的原因;

2)把正確解答過程寫出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,美麗的弦圖,蘊含著四個全等的直角三角形.已知每個直角三角形較長的直角邊為a,較短的直角邊為b,斜邊長為c.如圖,現(xiàn)將這四個全圖等的直角三角形緊密拼接,形成飛鏢狀,已知外圍輪廓(實線)的周長為24,OC=3,則該飛鏢狀圖案的面積( 。

A. 6 B. 12 C. 24 D. 24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點C的直線MNABDAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CDBE.

(1)求證:CEAD;

(2)當DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東方向55°,距離燈塔為2海里的點A.如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長是(  )

A. 2海里 B. 2sin 55°海里

C. 2cos 55°海里 D. 2tan 55°海里

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 中,,

①當 時,則______;

②在圖中的網格區(qū)域內找一點,使,且四邊形被過點的一條直線分割成兩部分后,可以拼成一個正方形,則點坐標為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程m x2-(m+2)x+2=0(m≠0).

(1)求證:無論m為何值時,這個方程總有兩個實數(shù)根;

(2)若方程的兩個實數(shù)根都是整數(shù),求正整數(shù)m的值.

查看答案和解析>>

同步練習冊答案