【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點A測得大樹頂端B的仰角為45°,沿斜坡走3米到達斜坡上點D,在此處測得樹頂端點B的仰角為31°,且斜坡AF的坡比為1:2.
(1)求小明從點A到點D的過程中,他上升的高度;
(2)大樹BC的高度約為多少米?(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
【答案】(1)小明從點A到點D的過程中,他上升的高度為3米;(2)大樹的高度約為16.5米.
【解析】
(1)作DH⊥AE于H,解Rt△ADH,即可求出DH;
(2)延長BD交AE于點G,解Rt△GDH、Rt△ADH,求出GH、AH,得到AG;設(shè)BC=x米,根據(jù)正切的概念用x表示出GC、AC,根據(jù)GC﹣AC=AG列出方程,解方程得到答案.
(1)作DH⊥AE于H,如圖1所示:
在Rt△ADH中,∵,∴AH=2DH.
∵AH2+DH2=AD2,∴(2DH)2+DH2=(3)2,∴DH=3.
答:小明從點A到點D的過程中,他上升的高度為3米;
(2)如圖2所示:延長BD交AE于點G,設(shè)BC=xm,由題意得:∠G=31°,∴GH5.
∵AH=2DH=6,∴GA=GH+AH=5+6=11.
在Rt△BGC中,tan∠G,∴CGx.
在Rt△BAC中,∠BAC=45°,∴AC=BC=x.
∵GC﹣AC=AG,∴x﹣x=11,解得:x=16.5.
答:大樹的高度約為:16.5米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長為24m的籬笆,一面利用墻(墻的最大可用長度a為10m),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為xm,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式;
(2)如果要圍成面積為45m2的花圃,AB的長是多少米?
(3)能圍成面積比45 m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】溫州市政府計劃投資百億元開發(fā)甌江口新區(qū),打造出一個“東方時尚島、海上新溫州”.為了解溫州市民對甌江口新區(qū)的關(guān)注情況,某學(xué)校數(shù)學(xué)興趣小組隨機采訪部分溫州市民,對采訪情況制作了統(tǒng)計圖表的一部分如下:
關(guān)注情況 | 頻數(shù) | 頻率 |
A.高度關(guān)注 | m | 0.1 |
B.一般關(guān)注 | 100 | 0.5 |
C.不關(guān)注 | 30 | n |
D.不知道 | 50 | 0.25 |
(1)根據(jù)上述統(tǒng)計表可得此次采訪的人數(shù)為 人;m= ,n= ;
(2)根據(jù)以上信息補全條形統(tǒng)計圖;
(3)根據(jù)上述采訪結(jié)果,估計25000名溫州市民中高度關(guān)注甌江口新區(qū)的市民約 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場舉辦抽獎活動,規(guī)則如下:在不透明的袋子中有2個紅球和2個黑球,這些球除顏色外都相同,顧客每次摸出一個球,若摸到紅球,則獲得1份獎品,若摸到黑球,則沒有獎品。
(1)如果小芳只有一次摸球機會,那么小芳獲得獎品的概率為 ;
(2)如果小芳有兩次摸球機會(摸出后不放回),求小芳獲得2份獎品的概率。(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,先將拋物線y=2x2﹣4x關(guān)于y軸作軸對稱變換,再將所得的拋物線,繞它的頂點旋轉(zhuǎn)180°,那么經(jīng)兩次變換后所得的新拋物線的函數(shù)表達式為( )
A.y=﹣2x﹣4xB.y=﹣2x+4x
C.y=﹣2x﹣4x﹣4D.y=﹣2x+4x+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解外國語中學(xué)2016級學(xué)生的跳繩成績,羅老師隨機調(diào)查了該年級體育模擬考試中部分同學(xué)的跳繩成績,并繪制成了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖.請你根據(jù)圖中提供的信息完成下列各題:
(1)被調(diào)查同學(xué)跳繩成績的中位數(shù)是 ,并補全上面的條形統(tǒng)計圖;
(2)如果我校初三年級共有學(xué)生1200人,估計跳繩成績能得9分的學(xué)生約有 人;
(3)從初三學(xué)生中隨機抽取一人,求所抽同學(xué)本次跳繩成績恰好為8分得概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種進價為每件40元的T恤,若銷售單價為60元,則每周可賣出300件.為提高利潤,欲對該T恤進行漲價銷售.經(jīng)過調(diào)查發(fā)現(xiàn):每漲價1元,每周要少賣出10件.請確定該T恤漲價后每周的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并求銷售單價定為多少元時,每周的銷售利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化環(huán)境,學(xué)校準備在如圖所示的矩形ABCD空地上進行綠化,規(guī)劃在中間的一塊四邊形MNPQ上種花,其余的四塊三角形上鋪設(shè)草坪,要求AM=AN=CP=CQ,已知BC=30米,AB=42米,設(shè)AN=x米,種花的面積為y1平方米,草坪面積y2平方米.
(1)分別求y1和y2與x之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)當(dāng)AN的長為多少米時,種花的面積為640平方米?
(3)若種花每平方米需200元,鋪設(shè)草坪每平方米需100元,現(xiàn)設(shè)計要求種花的面積不大于640平方米,設(shè)學(xué)校所需費用W(元),求W與x之間的函數(shù)關(guān)系式,并求出學(xué)校所需費用的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn)
如圖1,在五邊形中,,,,試猜想,,之間的數(shù)量關(guān).小明地過仔細思考,得到如下解題思路:
將繞點逆時針旋轉(zhuǎn)至.由,得,即點,,三點共線,易證_____,被,,之間的數(shù)量關(guān)系是_______;
(2)類比探究
如圖2,在四邊形中,,,點,分別在邊,的延長線上,,連接,試猜想,,之間的數(shù)量關(guān)系,并給出證明.
(3)拓展延伸
如圖3,在中,,,點,均在邊上,且,若,,則的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com