某養(yǎng)殖專業(yè)戶計劃利用房屋的一面墻修造如圖所示的長方體水池,培育不同品種的魚苗。他已準備可以修高為3m、長30m的水池墻的材料,圖中EF與房屋的墻壁互相垂直,設(shè)AD的長為m。(不考慮水池墻的厚度)
(1)請直接寫出AB的長(用含有的代數(shù)式表示);
(2)試求水池的總?cè)莘eV與的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)如果房屋的墻壁可利用的長度為10.5m,請利用函數(shù)圖象與性質(zhì)求V的最大值。
解:(1)AB=30-3;
(2)由(1)知V與的函數(shù)關(guān)系式為
              V==,
  30-3x>0,即x<10,
  ∴x的取值范圍是0<x<10。
(3)令30-3x≤10.5,解得x≥6.5,
   對于
   ∵a=-9<0,
   ∴函數(shù)圖象是第一象限內(nèi)開口向下的拋物線,對稱軸為x=5,
    當(dāng)≥5時,V隨x的增大而減小,
    又∵6.5>5,由右圖可知,當(dāng)x=6.5時,V取得最大值,
    此時V最大值=。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、某養(yǎng)殖專業(yè)戶計劃利用房屋的一面墻修造如圖所示的長方體水池,培育不同品種的魚苗.他已準備可以修高為3m.長30m的水池墻的材料,圖中EF與房屋的墻壁互相垂直,設(shè)AD的長為xm.(不考慮水池墻的厚度)
(1)請直接寫出AB的長(用含有x的代數(shù)式表示);
(2)試求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如果房屋的墻壁可利用的長度為10.5m,請利用函數(shù)圖象與性質(zhì)求V的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某養(yǎng)殖專業(yè)戶計劃利用房屋的一面墻修造如圖所示的長方體水池,培育不同品種的魚苗.他已準備可以修高為3m.長30m的水池墻的材料,圖中EF與房屋的墻壁互相垂直,設(shè)AD的長為xm.(不考慮水池墻的厚度)
(1)請直接寫出AB的長(用含有x的代數(shù)式表示);
(2)試求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如果房屋的墻壁可利用的長度為10.5m,請利用函數(shù)圖象與性質(zhì)求V的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年福建省泉州市泉港區(qū)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

某養(yǎng)殖專業(yè)戶計劃利用房屋的一面墻修造如圖所示的長方體水池,培育不同品種的魚苗.他已準備可以修高為3m.長30m的水池墻的材料,圖中EF與房屋的墻壁互相垂直,設(shè)AD的長為xm.(不考慮水池墻的厚度)
(1)請直接寫出AB的長(用含有x的代數(shù)式表示);
(2)試求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如果房屋的墻壁可利用的長度為10.5m,請利用函數(shù)圖象與性質(zhì)求V的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省泉州市泉港區(qū)初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•泉港區(qū)質(zhì)檢)某養(yǎng)殖專業(yè)戶計劃利用房屋的一面墻修造如圖所示的長方體水池,培育不同品種的魚苗.他已準備可以修高為3m.長30m的水池墻的材料,圖中EF與房屋的墻壁互相垂直,設(shè)AD的長為xm.(不考慮水池墻的厚度)
(1)請直接寫出AB的長(用含有x的代數(shù)式表示);
(2)試求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如果房屋的墻壁可利用的長度為10.5m,請利用函數(shù)圖象與性質(zhì)求V的最大值.

查看答案和解析>>

同步練習(xí)冊答案