【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸、y軸分別相交于A(﹣3,0),B(0,﹣3)兩點(diǎn),二次函數(shù)y=x2+mx+n的圖象經(jīng)過點(diǎn)A.

(1)求一次函數(shù)y=kx+b的解析式;
(2)若二次函數(shù)y=x2+mx+n圖象的頂點(diǎn)在直線AB上,求m,n的值;
(3)當(dāng)﹣3≤x≤0時(shí),二次函數(shù)y=x2+mx+n的最小值為﹣4,求m,n的值.

【答案】
(1)

解:A(﹣3,0),B(0,﹣3)代入y=kx+b得

,解得 ,

∴一次函數(shù)y=kx+b的解析式為:y=﹣x﹣3


(2)

解:二次函數(shù)y=x2+mx+n圖象的頂點(diǎn)為(﹣ ,

∵頂點(diǎn)在直線AB上,

= ﹣3,

又∵二次函數(shù)y=x2+mx+n的圖象經(jīng)過點(diǎn)A(﹣3,0),

∴9﹣3m+n=0,

∴組成方程組為

解得


(3)

解:∵二次函數(shù)y=x2+mx+n的圖象經(jīng)過點(diǎn)A.

∴9﹣3m+n=0,

∵當(dāng)﹣3≤x≤0時(shí),二次函數(shù)y=x2+mx+n的最小值為﹣4,

①如圖1,當(dāng)對(duì)稱軸﹣3<﹣ <0時(shí)

最小值為 =﹣4,與9﹣3m+n=0,組成方程組為

解得 (由﹣3<﹣ <0知不符合題意舍去)

所以

②如圖2,當(dāng)對(duì)稱軸﹣ >0時(shí),在﹣3≤x≤0時(shí),x為0時(shí)有最小值為﹣4,

把(0,﹣4)代入y=x2+mx+n得n=﹣4,

把n=﹣4代入9﹣3m+n=0,得m=

∵﹣ >0,

∴m<0,

∴此種情況不成立,

③當(dāng)對(duì)稱軸﹣ =0時(shí),y=x2+mx+n的最小值為﹣4,

把(0,﹣4)代入y=x2+mx+n得n=﹣4,

把n=﹣4代入9﹣3m+n=0,得m=

∵﹣ =0,

∴m=0,

∴此種情況不成立,

④當(dāng)對(duì)稱軸﹣ ≤﹣3時(shí),最小值為0,不成立

綜上所述m=2,n=﹣3.


【解析】(1)利用待定系數(shù)法求出解析式,(2)先表示出二次函數(shù)y=x2+mx+n圖象的頂點(diǎn),利用直線AB列出式子,再與點(diǎn)A在二次函數(shù)上得到的式子組成方程組求得m,n的值,(3)本題要分四種情況①當(dāng)對(duì)稱軸﹣3<﹣ <0時(shí),②當(dāng)對(duì)稱軸﹣ >0時(shí),③當(dāng)對(duì)稱軸﹣ =0時(shí),④當(dāng)對(duì)稱軸﹣ ≤﹣3時(shí),結(jié)合二次函數(shù)y=x2+mx+n的圖象經(jīng)過點(diǎn)A得出的式子9﹣3m+n=0,求出m,n但一定要驗(yàn)證是否符合題意.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EC∥AB,∠EDA=∠ABF.
(1)求證:四邊形ABCD是平行四邊形;
(2)求證:OA2=OEOF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明晚上由路燈A下的點(diǎn)B處走到點(diǎn)C處時(shí),測(cè)得自身影子CD的長為1米,他繼續(xù)往前走3米到達(dá)點(diǎn)E處(即CE=3米),測(cè)得自己影子EF的長為2米,已知小明的身高是1.5米,那么路燈A的高度AB是(
A.4.5米
B.6米
C.7.2米
D.8米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,點(diǎn)E在BC邊上,AE與BD交于點(diǎn)F,∠BAE=∠DBC.
(1)求證:△ABE∽△BCD;
(2)求tan∠DBC的值;
(3)求線段BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出下列命題的已知、求證,并完成證明過程.
(1)命題:如果一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡稱:“等角對(duì)等邊”).

已知:如圖,
求證:
(2)證明命題

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出下列命題的已知、求證,并完成證明過程.
(1)命題:如果一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡稱:“等角對(duì)等邊”).

已知:如圖,
求證:
(2)證明命題

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的發(fā)展,互聯(lián)網(wǎng)消費(fèi)逐漸深入人們的生活,如圖所示的是“滴滴順風(fēng)車”與“滴滴快車”的行駛里程x(公里)與計(jì)費(fèi)y(元)之間的函數(shù)關(guān)系圖象,有下列說法:其中正確說法的個(gè)數(shù)有( ) ①“快車”行駛里程不超過5公里計(jì)費(fèi)8元;
②“順風(fēng)車”行駛里程超過2公里的部分,每公里計(jì)費(fèi)1.2元;
③A點(diǎn)的坐標(biāo)為(6.5,10.4);
④從合肥西站到會(huì)展中心的里程是15公里,則“順風(fēng)車”要比“快車”少用3.4元.

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)P是直徑AB上的一點(diǎn)(不與A重合),過點(diǎn)P作AB的垂線交BC于點(diǎn)Q.
(1)在線段PQ上取一點(diǎn)D,使DQ=DC,連接DC,試判斷CD與⊙O的位置關(guān)系,并說明理由.
(2)若cosB= ,BP=6,AP=1,求QC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A是反比例函數(shù)y=﹣ 的圖象上的一個(gè)動(dòng)點(diǎn),連接OA,若將線段O A繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段OB,則點(diǎn)B所在圖象的函數(shù)表達(dá)式為

查看答案和解析>>

同步練習(xí)冊(cè)答案