如圖,將矩形紙片ABCD沿其對角線AC折疊,使點(diǎn)B落到點(diǎn)B′的位置,AB′與CD交于點(diǎn)E.
(1)試找出一個(gè)與△AED全等的三角形,并加以證明;
(2)若AB=8,DE=3,P為線段AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PG⊥AB′于點(diǎn)G,作PH⊥DC于點(diǎn)H,試判斷PG+PH的值是否為定值?若為定值,請求出這個(gè)定值;若不是定值,請說明理由.
(1)△CEB′≌△AED.
證明:由折疊和四邊形ABCD為矩形可得:
AD=B′C,∠D=∠B′=90°,
在△CEB′和△AED中,
∠CEB′=∠DEA
∠B′=∠D
B′C=AD
,
∴△CEB′≌△AED(AAS).

(2)PG+PH的值是定值.
①當(dāng)點(diǎn)P不與點(diǎn)A、C重合時(shí),
延長HP交AB于點(diǎn)M,則PM⊥AB.
∵∠EAC=∠CAB,PG⊥AB′于點(diǎn)G,
∴PG=PM.
∴PG+PH=PM+PH=HM=AD.
∵∠EAC=∠CAB,∠CAB=∠ECA,
∴∠EAC=∠ECA.
∴AE=EC=DC-DE=AB-DE=8-3=5.
在Rt△ADE中,AD=
AE2-DE2
=
52-32
=4

∴PG+PH=AD=4.
②當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),點(diǎn)G與點(diǎn)A重合,點(diǎn)H與點(diǎn)D重合,
∴PG+PH=0+AD=4.
③當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),點(diǎn)G與點(diǎn)B′重合,點(diǎn)H與點(diǎn)C重合,
∴PG+PH=B′C=BC=AD=4.
綜上說述,PG+PH的值是定值,且PG+PH=4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖的方格紙中,左邊圖形到右邊圖形的變換是( �。�
A.向右平移7格
B.以AB的垂直平分線為對稱軸作軸對稱變換,再以AB為對稱軸作軸對稱變換
C.繞AB的中點(diǎn)旋轉(zhuǎn)180°,再以AB為對稱軸作軸對稱
D.以AB為對稱軸作軸對稱,再向右平移7格

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在△ABC中,AB=20,AC=12,BC=16,把△ABC折疊,使AB落在直線AC上,求重疊部分(陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,把一個(gè)長方形的紙片對折兩次,然后剪下一個(gè)角,為了得到一個(gè)銳角為60°的菱形,剪口與折痕所成的角α的度數(shù)應(yīng)為( �。�
A.30°B.60°C.120°D.30°或60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了探索代數(shù)式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的運(yùn)用了“數(shù)形結(jié)合”思想.具體方法是這樣的:如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則AC=
x2+1
CE=
(8-x)2+25
,則問題即轉(zhuǎn)化成求AC+CE的最小值.
(1)我們知道當(dāng)A、C、E在同一直線上時(shí),AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于______,此時(shí)x=______;
(2)請你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式
x2+4
+
(12-x)2+9
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形OABC的長OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC.
(1)填空:∠PCB=______度,P點(diǎn)坐標(biāo)為______;
(2)若P、A兩點(diǎn)在拋物線y=-
4
3
x2+bx+c
上,求b,c的值;
(3)若直線y=kx+m平行于CP,且于(2)中的拋物線有且只有一個(gè)交點(diǎn),求k,m的值;
(4)在(2)中拋物線CP段(不包括C,P點(diǎn))上,是否存在一點(diǎn)M,使得四邊形MCAP的面積最大?若存在求此時(shí)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形紙片ABCD的邊長AB=4,AD=2.將矩形紙片沿EF折疊,使點(diǎn)A與點(diǎn)C重合,折疊后在其一面著色.
(1)GC的長為______,F(xiàn)G的長為______;
(2)著色面積為______;
(3)若點(diǎn)P為EF邊上的中點(diǎn),則CP的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,是用一張長方形紙條折成的.如果∠1=110°,那么∠2=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,動(dòng)手操作:長為1,寬為a的長方形紙片(
1
2
<a<1
),如圖那樣折一下,剪下一個(gè)邊長等于長方形寬度的正方形(稱為第一次操作);再把剩下的長方形如圖那樣折一下,剪下一個(gè)邊長等于此時(shí)長方形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.若在第n此操作后,剩下的長方形為正方形,則操作終止.當(dāng)n=3時(shí),a的值為( �。�
A.
2
3
B.
3
4
C.
3
5
D.
3
4
3
5

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炶鈧繂鐣烽锕€唯闁挎棁濮ら惁搴♀攽閻愬樊鍤熷┑顔炬暬閹虫繃銈i崘銊у幋闂佺懓顕崑娑氱不閻樼粯鈷戠紒瀣皡閺€缁樸亜閵娿儲顥㈡鐐茬墦婵℃瓕顦柛瀣崌濡啫鈽夊▎蹇旀畼闁诲氦顫夊ú鏍ь嚕閸洖绠為柕濞垮労濞撳鎮归崶顏勭处濠㈣娲熷缁樻媴閾忕懓绗℃繛鎾寸椤ㄥ﹤鐣烽弶搴撴婵ê褰夌粭澶娾攽閻愭潙鐏﹂懣銈嗕繆閹绘帞澧涚紒缁樼洴瀹曞崬螣閸濆嫷娼旀俊鐐€曠换鎺楀窗閺嵮屾綎缂備焦蓱婵挳鏌ら幁鎺戝姢闁靛棗锕娲閳哄啰肖缂備胶濮甸幑鍥偘椤旇法鐤€婵炴垶鐟﹀▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆戠矆閸愨斂浜滈柡鍥ф濞层倝鎮″鈧弻鐔告綇妤e啯顎嶉梺绋款儐閸旀瑩寮诲☉妯锋瀻闊浄绲炬晥闂備浇顕栭崰妤呮偡瑜忓Σ鎰板箻鐎涙ê顎撻梺鍛婄箓鐎氱兘鍩€椤掆偓閻倿寮诲☉銏犖╅柕澹啰鍘介柣搴㈩問閸犳牠鈥﹂柨瀣╃箚闁归棿绀侀悡娑㈡煕鐏炲墽鐓紒銊ょ矙濮婄粯鎷呴崨闈涚秺瀵敻顢楅崒婊呯厯闂佺鎻€靛矂寮崒鐐寸叆闁绘洖鍊圭€氾拷