試題分析:(1)由四邊形ABCD是平行四邊形知∠CAD=∠BCA,從而∠BCA=∠EBC,易證△BCA≌△CBE,因此CE=AB=6;
(2)過A作AA′∥CE交BC于A′,交BE于點F,可知四邊形AA′CE為平行四邊形,所以AE=A′C,∠CEB=∠EFA,∠AA′B=∠EAA′;又AE+AB=BC,∠BAA′=∠B A′A,易證∠BEC=∠ABE+
∠BAD.
試題解析:∵四邊形ABCD是平行四邊形,
∴AD∥BC
∴∠CAD=∠BCA,
∴∠BCA=∠EBC
又:AC=BE,BC=CB
∴△BCA≌△CBE
∴CE=AB=6.
(2)過A作AA′∥CE交BC于A′,交BE于點F,
∴四邊形AA′CE是平行四邊形
∴∠CEB=∠EFA,∠AA′B=∠E AA′,AE= A′C
又:AE+AB=BC,
∴AB=BA′
∴∠BAA′=∠B A′A=∠E AA′=
又:∠EFA=∠ABE+∠BAF
∴∠BEC=∠ABE+
∠BAD.
考點: 1.平行四邊形的判定與性質;2.全等三角形的判定與性質;3.等腰三角形的性質.