已知α、β是一元二次方程x2-2x-2=0的兩實數(shù)根,則代數(shù)式(α-2)(β-2)=   
【答案】分析:先根據(jù)根與系數(shù)的關系得到α+β=2,αβ=-2,再把(α-2)(β-2)展開整理為αβ-2(α+β)+4,然后利用整體思想進行計算即可.
解答:解:根據(jù)題意得α+β=2,αβ=-2,
所以原式=αβ-2(α+β)+4
=-2-2×2+4
=-2.
故答案為-2.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系:若方程兩個為x1,x2,則x1+x2=-,x1•x2=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次x2-6x+k+1=0的兩個實數(shù)根x1,x2
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知:關于x的一元二次方程ax2+bx+c=3的一個根為x=2,且二次函數(shù)y=ax2+bx+c的對稱軸是直線x=2,則拋物線的頂點坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(1,3)及部分圖象(如圖所示),其中圖象與橫軸的正半軸交點為(3,0),由圖象可知:
①當x
>1
>1
時,函數(shù)值隨著x的增大而減;
②關于x的一元二次不等式ax2=bx+c>0的解是
-1<x<3
-1<x<3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(-1,-3.2)及部分圖象(如圖所示),其中圖象與橫軸的正半軸交點為(2,0),由圖象可知:
①當x
<-1
<-1
時,函數(shù)值隨著x的增大而減小;
②關于x的一元二次不等式ax2+bx+c>0的解是
x>2或x<-4
x>2或x<-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則一元二次不等式ax2+bx+c>0的解是
 

查看答案和解析>>

同步練習冊答案