【題目】如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=∠PBD.延長(zhǎng)PD交圓的切線(xiàn)BE于點(diǎn)E

(1)判斷直線(xiàn)PD是否為⊙O的切線(xiàn),并說(shuō)明理由;

(2)如果∠BED=60°,PD=,求PA的長(zhǎng).

(3)將線(xiàn)段PD以直線(xiàn)AD為對(duì)稱(chēng)軸作對(duì)稱(chēng)線(xiàn)段DF,點(diǎn)F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.

【答案】(1)直線(xiàn)PD⊙O的切線(xiàn),證明詳見(jiàn)解析;(2)PA=1;(3)詳見(jiàn)解析.

【解析】

(1)連接OD,由AB是圓O的直徑可得∠ADB=90°,進(jìn)而求得∠ADO+PDA=90°,即可得出直線(xiàn)PD為⊙O的切線(xiàn);

(2)根據(jù)BE是⊙O的切線(xiàn),則∠EBA=90°,即可求得∠P=30°,再由PD為⊙O的切線(xiàn),得∠PDO=90°,根據(jù)三角函數(shù)的定義求得OD,由勾股定理得OP,即可得出PA;

(3)根據(jù)題意可證得∠ADF=PDA=PBD=ABF,由AB是圓O的直徑,得∠ADB=90°,設(shè)∠PBD=x°,則可表示出∠DAF=PAD=90°+x°,DBF=2x°,由圓內(nèi)接四邊形的性質(zhì)得出x的值,可得出BDE是等邊三角形.進(jìn)而證出四邊形DFBE為菱形.

(1)直線(xiàn)PD為⊙O的切線(xiàn)

理由如下

如圖1,連接OD,

AB是圓O的直徑,

∴∠ADB=90°,

∴∠ADO+BDO=90°,

又∵DO=BO,

∴∠BDO=PBD,

∵∠PDA=PBD,

∴∠BDO=PDA,

∴∠ADO+PDA=90°,即PDOD,

∵點(diǎn)D在⊙O上,

∴直線(xiàn)PD為⊙O的切線(xiàn);

(2)BE是⊙O的切線(xiàn),

∴∠EBA=90°,

∵∠BED=60°,

∴∠P=30°,

PD為⊙O的切線(xiàn),

∴∠PDO=90°,

RtPDO中,∠P=30°,PD=

,解得OD=1,

=2,

PA=PO﹣AO=2﹣1=1;

(3)如圖2,

依題意得:∠ADF=PDA,PAD=DAF,

∵∠PDA=PBDADF=ABF,

∴∠ADF=PDA=PBD=ABF,

AB是圓O的直徑,

∴∠ADB=90°,

設(shè)∠PBD=x°,則∠DAF=PAD=90°+x°,DBF=2x°,

∵四邊形AFBD內(nèi)接于⊙O,

∴∠DAF+DBF=180°,

90°+x+2x=180°,解得x=30°,

∴∠ADF=PDA=PBD=ABF=30°,

BE、ED是⊙O的切線(xiàn),

DE=BE,EBA=90°,

∴∠DBE=60°,∴△BDE是等邊三角形,

BD=DE=BE,

又∵∠FDB=ADB﹣ADF=90°﹣30°=60°DBF=2x°=60°,

∴△BDF是等邊三角形,

BD=DF=BF,

DE=BE=DF=BF,

∴四邊形DFBE為菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,公路AB和公路CD在點(diǎn)P處交匯,點(diǎn)E處有一所學(xué)校,EP160米,點(diǎn)E到公路AB的距高EF80米,假若拖拉機(jī)行駛時(shí),周?chē)?/span>100米內(nèi)會(huì)受到噪音影響,那么拖拉機(jī)在公路AB上沿方向行駛時(shí),學(xué)校是否受到影響,請(qǐng)說(shuō)明理由;如果受到影響,已知拖拉機(jī)的速度是18千米/小時(shí),那么學(xué)校受到影響的時(shí)間為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y=x2+2x﹣3x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),將這條拋物線(xiàn)向右平移mm>0)個(gè)單位長(zhǎng)度,平移后的拋物線(xiàn)與x軸交于CD兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),若B,C是線(xiàn)段AD的三等分點(diǎn),則m的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,DAB上的點(diǎn),過(guò)點(diǎn)DBC于點(diǎn)F,交AC的延長(zhǎng)線(xiàn)于點(diǎn)E,連接CD,則下列結(jié)論正確的有( )

DCB=B;②CD=AB;③ADC是等邊三角形;④若E=30°,則DE=EF+CF

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)如圖,已知三角形ABC的邊AB⊙O的切線(xiàn),切點(diǎn)為BAC經(jīng)過(guò)圓心O并與圓相交于點(diǎn)D、C,過(guò)C作直線(xiàn)CEAB,交AB的延長(zhǎng)線(xiàn)于點(diǎn)E

1)求證:CB平分∠ACE;

2)若BE=3CE=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬(wàn)元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬(wàn)元,乙種套房費(fèi)用為700萬(wàn)元.

(1)甲、乙兩種套房每套提升費(fèi)用各多少萬(wàn)元?

(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬(wàn)元,但不超過(guò)2096萬(wàn)元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°AD平分∠BAC,DEABE,下列結(jié)論:①CD=ED;②AC+BE=AB;③∠BDE=BAC;④BE=DE;⑤SBDESACD=BDAC,其中正確的個(gè)數(shù)(

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘漁船正以60海里/小時(shí)的速度向正東方向航行,在A處測(cè)得島礁P在東北方向上,繼續(xù)航行1.5小時(shí)后到達(dá)B處,此時(shí)測(cè)得島礁P在北偏東30°方向,同時(shí)測(cè)得島礁P正東方向上的避風(fēng)港M在北偏東60°方向.為了在臺(tái)風(fēng)到來(lái)之前用最短時(shí)間到達(dá)M處,漁船立刻加速以75海里/小時(shí)的速度繼續(xù)航行_____小時(shí)即可到達(dá).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)校組織的文明出行知識(shí)競(jìng)賽中,81)和82)班參賽人數(shù)相同,成績(jī)分為A、BC三個(gè)等級(jí),其中相應(yīng)等級(jí)的得分依次記為A級(jí)100分、B級(jí)90分、C級(jí)80分,達(dá)到B級(jí)以上(含B級(jí))為優(yōu)秀,其中82)班有2人達(dá)到A級(jí),將兩個(gè)班的成績(jī)整理并繪制成如下的統(tǒng)計(jì)圖,請(qǐng)解答下列問(wèn)題:

1)求各班參賽人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

2)此次競(jìng)賽中82)班成績(jī)?yōu)?/span>C級(jí)的人數(shù)為_______人;

3)小明同學(xué)根據(jù)以上信息制作了如下統(tǒng)計(jì)表:

平均數(shù)(分)

中位數(shù)(分)

方差

81)班

m

90

n

82)班

91

90

29

請(qǐng)分別求出mn的值,并從優(yōu)秀率和穩(wěn)定性方面比較兩個(gè)班的成績(jī);

查看答案和解析>>

同步練習(xí)冊(cè)答案