【題目】ABC中,A,BC的對邊分別記為,,由下列條件不能判定ABC為直角三角形的是( ).

AA+B=C

BA∶∠B∶∠C =123

C

D=346

【答案】D

【解析】

試題分析:A選項能判定ABC為直角三角形,因為三角形的內(nèi)角和是180度所以A+B+C=180°,當(dāng)A+B=C 此式轉(zhuǎn)換成C+C=180°,2C=180°C=90°,所以可判定ABC為直角三角形,B選項能判定ABC為直角三角形,因為三角形的內(nèi)角和是180度,所以A+B+C=180°,當(dāng)A∶∠B∶∠C =123時,最大角C=180°×=90°,所以可判定ABC為直角三角形;C選項能判定ABC為直角三角形,根據(jù)勾股定理的逆定理,如果三角形的兩條邊的平方和等于第三邊的平方,那么這個三角形就是直角三角形,當(dāng) ,移項得:,所以也可判定ABC為直角三角形;D選項不能判定ABC為直角三角形,因為當(dāng)=346時設(shè)這三邊為3x,4x,6x,因為3x2+4x26x2根據(jù)勾股定理的逆定理,ABC不是直角三角形;綜上所述,本題選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個被抹去x軸、y軸及原點(diǎn)O的網(wǎng)格圖,網(wǎng)格中每個小正方形的邊長均為1個單位長度,三角形ABC的各頂點(diǎn)都在網(wǎng)格的格點(diǎn)上,若記點(diǎn)A的坐標(biāo)為(﹣1,3),點(diǎn)C的坐標(biāo)為(1,﹣1).

(1)請在圖中找出x軸、y軸及原點(diǎn)O的位置;

(2)把ABC向下平移2個單位長度,再向右平移3個單位長度,請你畫出平移后的A1B1C1,若ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對應(yīng)點(diǎn)P1的坐標(biāo)是   ;

(3)試求出ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是將菱形ABCD以點(diǎn)O為中心按順時針方向分別旋轉(zhuǎn)90°,180°,270°后形成的圖形。若,AB=2,則圖中陰影部分的面積為

A. 124 B. 5 C. 12-4 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形中,
(1)猜想 之間的關(guān)系,并證明.
(2)猜想cosC與a,b,c之間的關(guān)系?并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D是邊AC上一點(diǎn),連BD,給出下列條件:①∠ABD=∠ACB;②AB2=ADAC;③ADBC=ABBD;④ABBC=ACBD.其中單獨(dú)能夠判定△ABC∽△ADB的個數(shù)是(
A.①②
B.①②③
C.①②④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C = 90,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點(diǎn)O,連接OC已知AC=6OC=,則直角邊BC的長為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),AOB為等邊三角形,P是x軸上一個動點(diǎn)(不與原O重合),以線段AP為一邊在其右側(cè)作等邊三角形APQ.

(1)求點(diǎn)B的坐標(biāo);

(2)在點(diǎn)P的運(yùn)動過程中,ABQ的大小是否發(fā)生改變?如不改變,求出其大;如改變,請說明理由.

(3)連接OQ,當(dāng)OQAB時,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀填空,并完成問題:“絕對值”一節(jié)學(xué)習(xí)后,數(shù)學(xué)老師對同學(xué)們的學(xué)習(xí)進(jìn)行了拓展.數(shù)學(xué)老師向同學(xué)們提出了這樣的問題:“在數(shù)軸上,一個數(shù)的絕對值就是表示這個數(shù)的點(diǎn)到原點(diǎn)的距離.那么,如果用P(a)表示數(shù)軸上的點(diǎn)P表示有理數(shù)a,Q(b)表示數(shù)軸上的點(diǎn)Q表示有理數(shù)b,那么點(diǎn)P與點(diǎn)Q的距離是多少?”

(1)聰明的小明經(jīng)過思考回答說:這個問題應(yīng)該有兩種情況.一種是點(diǎn)P和點(diǎn)Q在原點(diǎn)的兩側(cè),此時點(diǎn)P與點(diǎn)Q的距離是a和b的絕對值的和,即∣a∣+∣b∣.例如:點(diǎn)A(-3)與點(diǎn)B(5)的距離為∣-3∣+∣-5∣= ;

另一種是點(diǎn)P和點(diǎn)Q在原點(diǎn)的同側(cè),此時點(diǎn)P與點(diǎn)Q的距離的a和b中,較大的絕對值減去較小的絕對值,即∣a∣-∣b∣或∣b∣-∣a∣.例如:點(diǎn)A(-3)與點(diǎn)B(-5)的距離為∣-5∣-∣-3∣= ;

你認(rèn)為小明的說法有道理嗎?如果沒有道理,請你指出錯誤之處;如果有道理,請你模仿求出數(shù)軸上點(diǎn)M()與N()之間和點(diǎn)C(-2)與D(-7)之間的距離.

(2)小穎在聽了小明的方法后,提出了不同的方法,小穎說:我們可以不考慮點(diǎn)P和點(diǎn)Q所在的位置,無論點(diǎn)P與點(diǎn)Q的位置如何,它們之間的距離就是數(shù)a與b的差的絕對值,即∣a-b∣.例如:點(diǎn)A(-3)與點(diǎn)B(5)的距離就是∣-3-5∣= ;點(diǎn)A(-3)與點(diǎn)B(-5)的距離就是∣(-3)-(-5)∣= ;你認(rèn)為小穎的說法有道理嗎?如果沒有道理,請你指出錯誤之處;如果有道理,請你模仿求出數(shù)軸上點(diǎn)M()與N()之間和點(diǎn)C(-1.5)與D(-3.5)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)有理數(shù)在數(shù)軸上的位置如圖所示,且,化簡:

 

(2).已知在數(shù)軸上的位置如圖所示,化簡:

查看答案和解析>>

同步練習(xí)冊答案