【題目】如圖,直線 與雙曲線 交于點A.將直線 向右平移6個單位后,與雙曲線 交于點B,與x軸交于點C,若 ,則k的值為(
A.12
B.14
C.18
D.24

【答案】A
【解析】解:作AD⊥x軸于D點,BE⊥x軸于E,如圖, ∵直線 向右平移6個單位得到直線BC,
∴C點坐標為(6,0),
∵OA∥BC,
∴∠AOD=∠BCE,
∴Rt△AOD∽Rt△BCE,
= = =2,
∴OD=2CE,AD=2BE,
設CE=t,則OD=2t,OE=6+t,
當x=2t時,y= t,即A點坐標為(2t, t)
∴BE= t,
∴B點坐標為(6+t, t),
∴2t t=(6+t) t,解得t1=0(舍去),t2=2,
∴A點坐標為(4,3),
把A點坐標為(4,3)代入y= 得k=3×4=12.
故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲乙二人在環(huán)形跑道上同時同地出發(fā),同向運動.若甲的速度是乙的速度的2倍,則甲運動2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,則甲運動 周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,則甲運動 周,甲、乙第一次相遇,…,以此探究正常走時的時鐘,時針和分針從0點(12點)同時出發(fā),分針旋轉周,時針和分針第一次相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上一點,弦AD平分∠BAC,交BC于點E,若AB=6,AD=5,則DE的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為4的正方形ABCD內(nèi)接于點O,點E是 上的一動點(不與A、B重合),點F是 上的一點,連接OE、OF,分別與AB、BC交于點G,H,且∠EOF=90°,有以下結論: ① =
②△OGH是等腰三角形;
③四邊形OGBH的面積隨著點E位置的變化而變化;
④△GBH周長的最小值為4+
其中正確的是(把你認為正確結論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個不透明的口袋,甲口袋中裝有3個分別標有數(shù)字1、2、3的小球,乙口袋中裝有分別標有數(shù)字4、5的小球,它們的形狀、大小完全相同,現(xiàn)隨機從甲口袋中摸出一個小球記下數(shù)字,再從乙口袋中摸出一個小球記下數(shù)字.請用列表或樹狀圖的方法(只選其中一種)求出兩個數(shù)字之和能被3整除的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程
(1)x2+x﹣1=0
(2)x(x﹣2)+x﹣2=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=ax2+bx與y=ax+b的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、C、D都在半徑為4的⊙O上,過點C作AC∥BD交OB的延長線于點A,連接CD,已知∠CDB=∠OBD=30°.
(1)求證:AC是⊙O的切線;
(2)求弦BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國中東部地區(qū)霧霾天氣趨于嚴重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務.
(1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關系式;并求出自變量x的取值范圍;
(2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案