【題目】如圖,設(shè)在一個(gè)寬度為w的小巷內(nèi),一個(gè)梯子長(zhǎng)為a,梯子的腳位于A點(diǎn),將梯子的頂端放在一堵墻上Q點(diǎn)時(shí),Q離開(kāi)地面的高度為k,梯子與地面的夾角為45°:將該梯子的頂端放在另一堵墻上R點(diǎn)時(shí),R點(diǎn)離開(kāi)地面的高度為h,且此時(shí)梯子與地面的夾角為75°,則小巷寬度w=

A.hB.kC.aD.

【答案】A

【解析】

連接QR,過(guò)QQDPR,則可證AQR為等邊三角形,得QR=AQ,進(jìn)而求證DQR≌△PRA,可得QD=RP,即墻面之間距離w=h

解:連接QR,過(guò)QQDPR

Q離開(kāi)地面的高度為k,梯子與地面的夾角為45°

∴∠AQD=45°,

又∵R點(diǎn)離開(kāi)地面的高度為h,且此時(shí)梯子與地面的夾角為75°

∴∠QAR=180°-75°-45°=60°,且AQ=AR

∴△AQR為等邊三角形,

AQ=QR=AR,

∵∠AQD=45°

∴∠RQD=60°-45°=15°

ARP=90°-RAP=90°-75°=15°,

∴∠RQD=ARP

又∵∠QDR=P=90°,AR=QR

∴△DQR≌△PRA,

QD=PR,即w=h

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過(guò)B點(diǎn),且頂點(diǎn)在直線y=上.

(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說(shuō)明理由.

(3)(2)的條件下,若M點(diǎn)是CD所在直線下方該拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)MMN平行于y軸交CD于點(diǎn)N.設(shè)點(diǎn)M的橫坐標(biāo)為t,MN的長(zhǎng)度為s,求st之間的函數(shù)關(guān)系式,寫(xiě)出自變量t的取值范圍,并求s取大值時(shí),點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)EOA的中點(diǎn),連接BE并延長(zhǎng)交AD于點(diǎn)F,已知SAEF=4,則下列結(jié)論:①;SBCE=36;SABE=12;④△AEFACD,其中一定正確的是( 。

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AB向終點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),那么△PBQ的面積S隨出發(fā)時(shí)間t(s)如何變化?寫(xiě)出函數(shù)關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)邊長(zhǎng)為2的等邊的邊上一點(diǎn),作于點(diǎn),點(diǎn)延長(zhǎng)線上一點(diǎn),當(dāng)時(shí),連接邊于點(diǎn),則的長(zhǎng)為(

A.1B.2C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,A=90°OBC邊上一點(diǎn),以O為圓心的半圓與AB邊相切于點(diǎn)D,與AC、BC邊分別交于點(diǎn)E、F、G,連接OD,已知BD=2,AE=3tanBOD=

1)求O的半徑OD;

2)求證:AEO的切線;

3)求圖中兩部分陰影面積的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,平面直角坐標(biāo)系中,直線 y1=x+3與拋物線y2=﹣+2x 的圖象如圖,點(diǎn)P是 y2 上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線 y1 的最短距離為()

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y1=ax2+bx+c(a≠0,a≠c)過(guò)點(diǎn)A(1,0),頂點(diǎn)為 B,且拋物線不過(guò)第三象限.

(1)過(guò)點(diǎn)B作直線l垂直于x軸于點(diǎn)C,若點(diǎn)C坐標(biāo)為(2,0),a=1,求b和c的值;

(2)比較與0的大小,并說(shuō)明理由;

(3)若直線y2=2x+m經(jīng)過(guò)點(diǎn)B,且與拋物線交于另外一點(diǎn)D(,b+8),求當(dāng)≤x<5時(shí)y1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教科書(shū)中這樣寫(xiě)道:“我們把多項(xiàng)式叫做完全平方式,如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng)使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變這種方法叫做配方法.配方法是一種重要的解決問(wèn)題的數(shù)學(xué)方法,不僅可以將一個(gè)看似不能分解的多項(xiàng)式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問(wèn)題或求化數(shù)式最大值.最小值等.

例如:分解因式

;例如求代數(shù)式的最小值..可知當(dāng)時(shí),有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問(wèn)題:

1)分解因式: _____

2)當(dāng)為何值時(shí),多項(xiàng)式有最小值,并求出這個(gè)最小值.

3)當(dāng)為何值時(shí).多項(xiàng)式有最小值并求出這個(gè)最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案