如圖:四邊形ABCD對(duì)角線AC與BD相交于點(diǎn)O,OD=2OA,OC=2OB.
(1)求證:△AOB∽△DOC;
(2)點(diǎn)E在線段OC上,若AB∥DE,求證:OD2=OE•OC.

【答案】分析:(1)根據(jù)對(duì)應(yīng)邊成比例,夾角相等,可證△AOB∽△DOC;
(2)根據(jù)相似三角形的性質(zhì)結(jié)合已知條件可得△DOC∽△EOD,再根據(jù)相似三角形對(duì)應(yīng)邊成比例求解.
解答:證明:(1)∵OD=2OA,OC=2OB,
.(2分)
又∠AOB=∠DOC,(2分)
∴△AOB∽△DOC.(2分)

(2)由(1)得:△AOB∽△DOC.
∴∠ABO=∠DCO.(1分)
∵AB∥DE,
∴∠ABO=∠EDO.(1分)
∴∠DCO=∠EDO.(1分)
∵∠DOC=∠EOD,
∴△DOC∽△EOD.(1分)
.(1分)
∴OD2=OE•OC.(1分)
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì),三角形相似的判定和性質(zhì)一直是中考考查的熱點(diǎn)之一,注意找準(zhǔn)對(duì)應(yīng)角和對(duì)應(yīng)邊.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案