如下圖,已知在Rt△ABC中,∠ACB=Rt∠,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2的值等于________.
科目:初中數(shù)學 來源: 題型:
3 |
3 |
查看答案和解析>>
科目:初中數(shù)學 來源:新教材完全解讀 九年級數(shù)學 下冊(配北師大版新課標) 北師大版新課標 題型:022
如下圖所示,在Rt△ABC中,已知∠B=30°,∠C=90°,AD平分∠BAC交BC于D,若AB=4,則AD=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知:AC⊥AB,BD⊥AB,且AC=BE,AE=BD,求證:△CDE是等腰直角三角形;
證明:∵AC⊥AB,BD⊥AB ∴∠CAE=∠DBE=90°
∵AC= BE,AE=BD ∴△ACE≌△BED
∴CE=DE且∠ACE=∠BED
∵∠ACE+∠AEC=90° ∴∠AEC+∠BED=90°
∴∠CED=90° ∴△CED為等腰直角三角形
利用上題的解題思路解答下列問題:
在Rt△ABC中,∠C=90°,D,E分別為CB,CA延長線上的點,BE與AD的交點為P.
1.若BD=AC,AE=CD,在下圖中畫出符合題意的圖形,求出∠APE的度數(shù);
2.若AC=BD,CD=AE,則∠APE=__________°
查看答案和解析>>
科目:初中數(shù)學 來源:2012年江蘇省九年級中考模擬數(shù)學試卷2 題型:解答題
如圖,已知:AC⊥AB,BD⊥AB,且AC=BE,AE=BD,求證:△CDE是等腰直角三角形;
證明:∵AC⊥AB,BD⊥AB ∴∠CAE=∠DBE=90°
∵AC= BE,AE=BD ∴△ACE≌△BED
∴CE=DE且∠ACE=∠BED
∵∠ACE+∠AEC=90° ∴∠AEC+∠BED=90°
∴∠CED=90° ∴△CED為等腰直角三角形
利用上題的解題思路解答下列問題:
在Rt△ABC中,∠C=90°,D,E分別為CB,CA延長線上的點,BE與AD的交點為P.
1.若BD=AC,AE=CD,在下圖中畫出符合題意的圖形,求出∠APE的度數(shù);
2.若AC=BD,CD=AE,則∠APE=__________°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com