(2009•中山)如圖所示,△ABC是等邊三角形,D點(diǎn)是AC的中點(diǎn),延長BC到E,使CE=CD.
(1)用尺規(guī)作圖的方法,過D點(diǎn)作DM⊥BE,垂足是M;(不寫作法,保留作圖痕跡)
(2)求證:BM=EM.

【答案】分析:(1)按照過直線外一點(diǎn)作已知直線的垂線步驟做;
(2)要證BM=EM可證BD=DE,根據(jù)三線合一得出BM=EM.
解答:(1)解:作圖如下;

(2)證明:∵△ABC是等邊三角形,D是AC的中點(diǎn)
∴BD平分∠ABC(三線合一)
∴∠ABC=2∠DBE
∵CE=CD
∴∠CED=∠CDE
又∵∠ACB=∠CED+∠CDE
∴∠ACB=2∠E
又∵∠ABC=∠ACB
∴2∠DBC=2∠E
∴∠DBC=∠E
∴BD=DE
又∵DM⊥BE
∴BM=EM.
點(diǎn)評:本題考查了過直線外一點(diǎn)作已知直線的垂線及考查了等邊三角形和等腰三角形的性質(zhì);作圖題要注意保留做題痕跡.證得BD=DE是正確解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷33(高橋初中 沈瑞娟)(解析版) 題型:解答題

(2009•中山)如圖所示,△ABC是等邊三角形,D點(diǎn)是AC的中點(diǎn),延長BC到E,使CE=CD.
(1)用尺規(guī)作圖的方法,過D點(diǎn)作DM⊥BE,垂足是M;(不寫作法,保留作圖痕跡)
(2)求證:BM=EM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省中山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•中山)如圖所示,A、B兩城市相距100km,現(xiàn)計劃在這兩座城市間修建一條高速公路(即線段AB),經(jīng)測量,森林保護(hù)中心P在A城市的北偏東30°和B城市的北偏西45°的方向上,已知森林保護(hù)區(qū)的范圍在以P點(diǎn)為圓心,50km為半徑的圓形區(qū)域內(nèi),請問計劃修建的這條高速公路會不會穿越保護(hù)區(qū),為什么?(參考數(shù)據(jù):≈1.732,≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•中山)如圖所示,在矩形ABCD中,AB=12,AC=20,兩條對角線相交于點(diǎn)O.以O(shè)B、OC為鄰邊作第1個平行四邊形OBB1C,對角線相交于點(diǎn)A1;再以A1B1、A1C為鄰邊作第2個平行四邊形A1B1C1C,對角線相交于點(diǎn)O1;再以O(shè)1B1、O1C1為鄰邊作第3個平行四邊形O1B1B2C1…依此類推.
(1)求矩形ABCD的面積;
(2)求第1個平行四邊形OBB1C,第2個平行四邊形和第6個平行四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•中山)如圖所示,A、B兩城市相距100km,現(xiàn)計劃在這兩座城市間修建一條高速公路(即線段AB),經(jīng)測量,森林保護(hù)中心P在A城市的北偏東30°和B城市的北偏西45°的方向上,已知森林保護(hù)區(qū)的范圍在以P點(diǎn)為圓心,50km為半徑的圓形區(qū)域內(nèi),請問計劃修建的這條高速公路會不會穿越保護(hù)區(qū),為什么?(參考數(shù)據(jù):≈1.732,≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省汕頭市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•中山)如圖所示,在矩形ABCD中,AB=12,AC=20,兩條對角線相交于點(diǎn)O.以O(shè)B、OC為鄰邊作第1個平行四邊形OBB1C,對角線相交于點(diǎn)A1;再以A1B1、A1C為鄰邊作第2個平行四邊形A1B1C1C,對角線相交于點(diǎn)O1;再以O(shè)1B1、O1C1為鄰邊作第3個平行四邊形O1B1B2C1…依此類推.
(1)求矩形ABCD的面積;
(2)求第1個平行四邊形OBB1C,第2個平行四邊形和第6個平行四邊形的面積.

查看答案和解析>>

同步練習(xí)冊答案