【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,點P在AD邊上以每秒1cm的速度從點A向點D運動,點Q在BC邊上,以每秒4cm的速度從點C出發(fā),在CB間往返運動,兩個點同時出發(fā),當點P到達點D時停止(同時點Q也停止),在這段時間內(nèi),線段PQ有(。┐纹叫杏AB?
A. 1 B. 2 C. 3 D. 4
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖①,∠QPN的頂點P在正方形ABCD兩條對角線的交點處,∠QPN=α,將∠QPN繞點P旋轉(zhuǎn),旋轉(zhuǎn)過程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點E和點F(點F與點C,D不重合).
(1)如圖①,當α=90°時,DE,DF,AD之間滿足的數(shù)量關(guān)系是 ;
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當α=60°時,(1)中的結(jié)論變?yōu)镈E+DF=AD,請給出證明;
(3)在(2)的條件下,若旋轉(zhuǎn)過程中∠QPN的邊PQ與射線AD交于點E,其他條件不變,探究在整個運動變化過程中,DE,DF,AD之間滿足的數(shù)量關(guān)系,直接寫出結(jié)論,不用加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的長AB=30,寬BC=20.
(1)如圖(1)若沿矩形ABCD四周有寬為1的環(huán)形區(qū)域,圖中所形成的兩個矩形ABCD與A′B′C′D′相似嗎?請說明理由;
(2)如圖(2),x為多少時,圖中的兩個矩形ABCD與A′B′C′D′相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鐵路的路基是等腰梯形ABCD,斜坡AD、BC的坡度i=1:1.5,路基AE高為3米,現(xiàn)由單線改為復線,路基需加寬4米,(即AH=4米),加寬后也成等腰梯形,且GH、BF斜坡的坡度i'=1:2,若路長為10000米,則加寬的土石方量共是____立方米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B兩點在數(shù)軸上表示的數(shù)分別為a,b,且點A在點B的左邊,=10,a+b=80,ab<0.
(1)求出a,b的值;
(2)現(xiàn)有一只電子螞蟻P從點A出發(fā),以3個單位長度/秒的速度向右運動,同時另一只電子螞蟻Q從點B出發(fā),以2個單位長度/秒的速度向左運動,經(jīng)過多長時間兩只電子螞蟻在數(shù)軸上相遇?相遇的點表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】建立模型:
如圖1,已知△ABC,AC=BC,∠C=90°,頂點C在直線l上.
操作:
過點A作AD⊥l于點D,過點B作BE⊥l于點E.求證:△CAD≌△BCE.
模型應用:
(1)如圖2,在直角坐標系中,直線l1:y=x+4與y軸交于點A,與x軸交于點B,將直線l1繞著點A順時針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達式.
(2)如圖3,在直角坐標系中,點B(8,6),作BA⊥y軸于點A,作BC⊥x軸于點C,P是線段BC上的一個動點,點Q(a,2a﹣6)位于第一象限內(nèi).問點A、P、Q能否構(gòu)成以點Q為直角頂點的等腰直角三角形,若能,請求出此時a的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠B=90°,tan∠BAC=,半徑為2的⊙O從點A開始(圖1),沿AB向右滾動,滾動時始終與AB相切(切點為D);當圓心O落在AC上時滾動停止,此時⊙O與BC相切于點E(圖2).作OG⊥AC于點G.
(1)利用圖2,求cos∠BAC的值;
(2)當點D與點A重合時(如圖1),求OG;
(3)如圖3,在⊙O滾動過程中,設AD=x,請用含x的代數(shù)式表示OG,并寫出x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com