(2010•東臺(tái)市模擬)已知,如圖,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于點(diǎn)D,過(guò)點(diǎn)C作CE⊥AD,垂足為E,CE的延長(zhǎng)線交AB于點(diǎn)F,過(guò)點(diǎn)E作EG∥BC交AB于點(diǎn)G,AE•AD=16,
(1)求AC的長(zhǎng);
(2)求EG的長(zhǎng).

【答案】分析:(1)∠CAD是公共角,∠ACB=∠AEC=90°,所以△ACE和△ADC相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例,列出比例式整理即可得到AC2=AE•AD,代入數(shù)據(jù)計(jì)算即可;
(2)根據(jù)勾股定理求出BC的長(zhǎng)度為8,再根據(jù)AD平分∠CAB交BC于點(diǎn)D,CE⊥AD證明△ACE和△AFE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等,CE=EF,最后根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半EG=BC.
解答:解:(1)∵CE⊥AD,
∴∠AEC=90°,
∵∠ACB=90°,
∴∠AEC=∠ACB,
又∠CAE=∠CAE,
∴△ACE∽△ADC,
,
即AC2=AE•AD,
∵AE•AD=16,
∴AC2=16,
∴AC=4;

(2)在△ABC中,BC===8,
∵AD平分∠CAB交BC于點(diǎn)D,
∴∠CAE=∠FAE,
∵CE⊥AD,
∴∠AEC=∠AEF=90°,
在△ACE和△AFE中,

∴△ACE≌△AFE(ASA),
∴CE=EF,
∵EG∥BC,
∴EG=BC=×8=4.
點(diǎn)評(píng):本題主要考查兩角對(duì)應(yīng)相等,兩三角形相似,相似三角形對(duì)應(yīng)邊成比例,三角形的中位線平行于第三邊并且等于第三邊的一半的性質(zhì),熟練掌握性質(zhì)并靈活運(yùn)用是解題的關(guān)鍵,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省鹽城市某片區(qū)聯(lián)合調(diào)研考試九年級(jí)數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•東臺(tái)市模擬)如圖,△ABO中,O是坐標(biāo)原點(diǎn),A,B
(1)①以原點(diǎn)O為位似中心,將△ABO放大,使變換后得到的△CDO與△ABO的位似比為2:1,且D在第一象限內(nèi),則C點(diǎn)坐標(biāo)為(______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省鹽城市東臺(tái)市片區(qū)聯(lián)合調(diào)研考試九年級(jí)數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•東臺(tái)市模擬)如圖,△ABO中,O是坐標(biāo)原點(diǎn),A,B
(1)①以原點(diǎn)O為位似中心,將△ABO放大,使變換后得到的△CDO與△ABO的位似比為2:1,且D在第一象限內(nèi),則C點(diǎn)坐標(biāo)為(______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省鹽城市東臺(tái)市九年級(jí)聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•東臺(tái)市模擬)如圖,△ABO中,O是坐標(biāo)原點(diǎn),A,B
(1)①以原點(diǎn)O為位似中心,將△ABO放大,使變換后得到的△CDO與△ABO的位似比為2:1,且D在第一象限內(nèi),則C點(diǎn)坐標(biāo)為(______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省鹽城市東臺(tái)市片區(qū)聯(lián)合調(diào)研考試九年級(jí)數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•東臺(tái)市模擬)解不等式組,并寫(xiě)出該不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省鹽城市東臺(tái)市九年級(jí)聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•東臺(tái)市模擬)已知一元二次方程(m-3)x2+2mx+m+1=0有兩個(gè)不相等的實(shí)數(shù)根,并且這兩個(gè)根又不互為相反數(shù).
(1)求m的取值范圍;
(2)當(dāng)m在取值范圍內(nèi)取最小正偶數(shù)時(shí),求方程的根.

查看答案和解析>>

同步練習(xí)冊(cè)答案