【題目】我市某縣政府為了迎接八一建軍節(jié),加強軍民共建活動,計劃從花園里拿出1430盆甲種花卉和1220盆乙種花卉,搭配成A、B兩種園藝造型共20個,在城區(qū)內(nèi)擺放,以增加節(jié)日氣氛,已知搭配A、B兩種園藝造型各需甲、乙兩種花卉數(shù)如表所示:(單位:盆)

(1)某校某年級一班課外活動小組承接了這個園藝造型搭配方案的設計,問符合題意的搭配方案有幾種?請你幫忙設計出來.

(2)如果搭配及擺放一個A造型需要的人力是8人次,搭配及擺放一個B造型需要的人力是11人次,哪種方案使用人力的總?cè)舜螖?shù)最少,請說明理由.

造型數(shù)量花

A

B

甲種

80

50

乙種

40

90

【答案】(1) 共有3種方案.分別為A12個,B種造型8個,A13個,B種造型7個,A14個,B種造型6;(2) 第三種方案使用人力的總?cè)舜螖?shù)最少

【解析】

(1)首先根據(jù)題意設需要A種造型x個,則B種造型(20-x)個,再根據(jù)甲乙兩種花卉的盆數(shù)列出不等式組,求出解集后要符合實際情況注意取整數(shù).
(2)根據(jù)(1)中設計出的搭配方案分別計算出使用人力的總?cè)舜螖?shù),比較一下哪個最少即可.

(1)設需要A種造型x,B種造型(20x)個由題意得:

解得:,

x為整數(shù)x的可能取值為12,13,14;

∴共有3種方案.

分別為A12個,B種造型8個,A13個,B種造型7個,A14個,B種造型6.

(2)第一種方案造型總?cè)舜螢椋?/span>12×8+8×11=184人次.

第二種方案造型總?cè)舜螢椋?/span>13×8+7×11=181人次

第三種方案造型總?cè)舜螢椋?/span>14×8+6×11=178人次

答:第三種方案使用人力的總?cè)舜螖?shù)最少.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4.

1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2

2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,∠A=80°,∠B、∠C的平分線的夾角是(

A. 130° B. 60° C. 130°或50° D. 60°或120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DEAB,過點EEFDE,交BC的延長線于點F.

(1)求證:△CEF是等腰三角形;

(2)若CD=2,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是否存在整數(shù)m,使關于x的不等式1++與關于x的不等式x+1> 的解集相同?若存在,求出整數(shù)m和不等式的解集;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù) 的圖象與x軸,y軸分別交于點A、B,與函數(shù)的圖象交于點M,點M的橫坐標為2,在x軸上有一點P(a,0)(其中a>2),過點P作x軸的垂線,分別交函數(shù)的圖象于點C、D.

(1)求點M、點A的坐標;

(2)若OB=CD,求a的值,并求此時四邊形OPCM的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c經(jīng)過點A(0,3)、B(4,3)、C(1,0)、
(1)填空:拋物線的對稱軸為直線x= , 拋物線與x軸的另一個交點D的坐標為;
(2)求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)的圖象如圖所示,則下列結(jié)論①;②;③④當,正確的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步練習冊答案