【題目】如圖,在ABC,∠A=70°,D、EF分別在BC、AC、AB上,且∠1=2,∠3=4,則∠EDF等于( 。

A. 70°B. 65°C. 55°D. 45°

【答案】C

【解析】

由已知可得∠1+3=180°-(∠B+C),根據(jù)三角形的內角和定理求得∠B+C=180°-A=110°,然后根據(jù)平角的概念即可求得∠EDF的度數(shù).

∵∠1=2,∠3=4,

∴∠1=180°-C),∠3=180°-B),

∴∠1+3=180°-(∠B+C),

∵∠B+C=180°-A=180°-70°=110°,

∴∠1+3=180°-×110°=180°-55°,

∴∠EDF=180°-(∠1+3=55°;

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】直線 y=x﹣1與坐標軸交于A、B兩點,點C在x軸上,若△ABC為等腰三角形且SABC= ,則點C的坐標為( )
A.、(0,0 )
B.(1﹣ ,0)或( 1,0)
C.、( +1,0 )
D.、(﹣ ﹣1,0)或(﹣ +1,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實數(shù)a,b,c在數(shù)軸上對應的點如圖所示,則下列式子中正確的是( )

A.ac>bc
B.|a﹣b|=a﹣b
C.﹣a<﹣b<c
D.﹣a﹣c>﹣b﹣c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E、F分別是邊BC、AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.

(1)請判斷:FG與CE的數(shù)量關系和位置關系;(不要求證明)
(2)如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請出判斷判斷予以證明;
(3)如圖3,若點E、F分別是BC、AB延長線上的點,其它條件不變,(1)中結論是否仍然成立?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(1)∣—6+(3.14)0()-2+(2)3 (2)(-a)3a2+(2a4)2÷a3.

(3) (4)(a-2b)(a+b)3a(a+b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面圖形都是由同樣大小的平行四邊形按一定的規(guī)律組成,其中,第①個圖形一共有1個平行四邊形,第②個圖形一共有5個平行四邊形,第③個圖形一共有11個平行四邊形,……,則第⑩個圖形中平行四邊形的個數(shù)為( )

……

圖① 圖② 圖③ 圖④

A. 108B. 109C. 110D. 111

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題 ——
(1)計算:20170 ;
(2)化簡:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,點P在AD上,AB=2,AP=1.將直角尺的頂點放在P處,直角尺的兩邊分別交AB,BC于點E,F(xiàn),連接EF(如圖①).

(1)當點E與點B重合時,點F恰好與點C重合(如圖②),求PC的長;
(2)探究:將直尺從圖②中的位置開始,繞點P順時針旋轉,當點E和點A重合時停止.在這個過程中,請你觀察、猜想,并解答:
①tan∠PEF的值是否發(fā)生變化?請說明理由;
②直接寫出從開始到停止,線段EF的中點經(jīng)過的路線長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,從點 ... 依次擴展下去,則 的坐標為 ( )

A. (505,-505)B. (-505,505)C. (-505,504)D. (-506,505)

查看答案和解析>>

同步練習冊答案