【題目】如圖,已知直線a,b,c,d,e,且∠1=∠2,∠3=∠4,則a與c平行嗎?為什么?
解:a與c平行;
理由:因為∠1=∠2 (_________________)
所以a//b (__________________________________________)
因為∠3=∠4 (_________________)
所以b//c (__________________________________________)
所以a//c (__________________________________________)
科目:初中數(shù)學 來源: 題型:
【題目】(1)在等邊三角形ABC中,
①如圖①,D,E分別是邊AC,AB上的點且AE=CD,BD與EC交于點F,則∠BFE的度數(shù)是 度;
②如圖②,D,E分別是邊AC,BA延長線上的點且AE=CD,BD與EC的延長線交于點F,此時∠BFE的度數(shù)是 度;
(2)如圖③,在△ABC中,AC=BC,∠ACB是銳角,點O是AC邊的垂直平分線與BC的交點,點D,E分別在AC,OA的延長線上,AE=CD,BD與EC的延長線交于點F,若∠ACB=α,求∠BFE的大小.(用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上兩點A,B對應的數(shù)分別為﹣4,8.
(1)如圖1,如果點P和點Q分別從點A,B同時出發(fā),沿數(shù)軸負方向運動,點P的運動速度為每秒2個單位,點Q的運動速度為每秒6個單位.
①A,B兩點之間的距離為 .
②當P,Q兩點相遇時,點P在數(shù)軸上對應的數(shù)是 .
③求點P出發(fā)多少秒后,與點Q之間相距4個單位長度?
(3)如圖2,如果點P從點A出發(fā)沿數(shù)軸的正方向以每秒2個單位的速度運動,點Q從點B出發(fā)沿數(shù)軸的負方向以每秒6個單位的速度運動,點M從數(shù)軸原點O出發(fā)沿數(shù)軸的正方向以每秒1個單位的速度運動,若三個點同時出發(fā),經(jīng)過多少秒后有MP=MQ?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡再求值
(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1);其中x=﹣3
(2)2a2﹣[(ab﹣4a2)+8ab]﹣ab;其中a=1,b=.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC中,AB=AC,點M、N分別是AB、AC上的點,且AM=AN.連接MN、CM、BN,點D、E、F、G分別是BC、MN、BN、CM的中點,連接E、F、D、G.
(l)判斷四邊形EFDG的形狀是 (不必證明);
(2)現(xiàn)將△AMN繞點A旋轉(zhuǎn)一定的角度,其他條件不變(如圖②),四邊形EFDG的形狀是否發(fā)生變化?證明你的結(jié)論;
(3)如圖②,在(2)的情況下,請將△ABC在原有的條件下添加一個條件,使四邊形EFDG是正方形.請寫出你添加的條件,并在添加條件的基礎上證明四邊形EFDG是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列解題過程:
已知a,b,c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:因為a2c2-b2c2=a4-b4, ①
所以c2(a2-b2)=( a2-b2)( a2+b2). ②
所以c2= a2+b2. ③
所以△ABC是直角三角形. ④
回答下列問題:
(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代碼為 ;
(2)錯誤的原因為 ;
(3)請你將正確的解答過程寫下來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD中,AB=4cm,BC=8cm.點P從點A出發(fā),沿AB勻速運動;點Q從點C出發(fā),沿C→B→A→D→C的路徑勻速運動.兩點同時出發(fā),在B點處首次相遇后,點P的運動速度每秒提高了3cm,并沿B→C→D→A的路徑勻速運動;點Q保持速度不變,繼續(xù)沿原路徑勻速運動,3s后兩點在長方形ABCD某一邊上的E點處第二次相遇后停止運動.設點P原來的速度為xcm/s.
(1)點Q的速度為 cm/s(用含x的代數(shù)式表示);
。2)求點P原來的速度.
(3)判斷E點的位置并求線段DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com