精英家教網(wǎng)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過(guò)A(-4,0),B(0,-4),
C(2,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.
求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=-x上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).
分析:(1)先假設(shè)出函數(shù)解析式,利用三點(diǎn)法求解函數(shù)解析式.
(2)設(shè)出M點(diǎn)的坐標(biāo),利用S=S△AOM+S△OBM-S△AOB即可進(jìn)行解答;
(3)分OB是平行四邊形的邊時(shí),表示出PQ的長(zhǎng),再根據(jù)平行四邊形的對(duì)邊相等列出方程求解即可;OB是對(duì)角線時(shí),由圖可知點(diǎn)A與P應(yīng)該重合.
解答:解:(1)設(shè)此拋物線的函數(shù)解析式為:
y=ax2+bx+c(a≠0),
將A(-4,0),B(0,-4),C(2,0)三點(diǎn)代入函數(shù)解析式得:
16a-4b+c=0
c=-4
4a+2b+c=0

解得
a=
1
2
b=1
c=-4
,
所以此函數(shù)解析式為:y=
1
2
x2+x-4
;
精英家教網(wǎng)
(2)∵M(jìn)點(diǎn)的橫坐標(biāo)為m,且點(diǎn)M在這條拋物線上,
∴M點(diǎn)的坐標(biāo)為:(m,
1
2
m2 +m-4
),
∴S=S△AOM+S△OBM-S△AOB
=
1
2
×4×(-
1
2
m2-m+4)+
1
2
×4×(-m)-
1
2
×4×4
=-m2-2m+8-2m-8
=-m2-4m,
=-(m+2)2+4,
∵-4<m<0,
當(dāng)m=-2時(shí),S有最大值為:S=-4+8=4.
答:m=-2時(shí)S有最大值S=4.

(3)設(shè)P(x,
1
2
x2+x-4).
當(dāng)OB為邊時(shí),根據(jù)平行四邊形的性質(zhì)知PB∥OQ,
∴Q的橫坐標(biāo)的絕對(duì)值等于P的橫坐標(biāo)的絕對(duì)值,
又∵直線的解析式為y=-x,
則Q(x,-x).
由PQ=OB,得|-x-(
1
2
x2+x-4)|=4,
解得x=0,-4,-2±2
5

x=0不合題意,舍去.
如圖,當(dāng)BO為對(duì)角線時(shí),知A與P應(yīng)該重合,OP=4.四邊形PBQO為平行四邊形則BQ=OP=4,Q橫坐標(biāo)為4,代入y=-x得出Q為(4,-4).
由此可得Q(-4,4)或(-2+2
5
,2-2
5
)或(-2-2
5
,2+2
5
)或(4,-4).
點(diǎn)評(píng):本題考查了三點(diǎn)式求拋物線的方法,以及拋物線的性質(zhì)和最值的求解方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對(duì)稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
(1)請(qǐng)?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過(guò)A、B、C三點(diǎn)的函數(shù)關(guān)系式.
(2)反思第(1)小問(wèn),考慮有沒(méi)有更簡(jiǎn)捷的解題策略?請(qǐng)說(shuō)出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,開(kāi)口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、在平面直角坐標(biāo)系中,把一個(gè)圖形先繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個(gè)新的圖形,我們把這個(gè)過(guò)程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個(gè)新的圖形△A1B1C1,可以把這個(gè)過(guò)程記為【90°,2】變換.
(1)在圖中畫(huà)出所有符合要求的△A1B1C1;
(2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過(guò)【θ,k】變換后得到△O′M′N′,若點(diǎn)M的對(duì)應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊(cè)答案