如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm。點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向終點(diǎn)B運(yùn)動;點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿CD、DA向終點(diǎn)A運(yùn)動(P、Q兩點(diǎn)中,有一個點(diǎn)運(yùn)動到終點(diǎn)時,所有運(yùn)動即終止).設(shè)P、Q同時出發(fā)并運(yùn)動了t秒。
(1)當(dāng)PQ將梯形ABCD分成兩個直角梯形時,求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存在,求出這樣的t的值,若不存在,請說明理由。
解:(1)過D作DE⊥AB于E,過C作CF⊥AB于F,如圖1。
∵ABCD是等腰梯形,∴四邊形CDEF是矩形,
∴DE=CF
又∵AD=BC,
又CD=2cm,AB=8cm,∴EF=CD=2cm
若四邊形APQD是直角梯形,則四邊形DEPQ為矩形。
∵CQ=t,∴DQ=EP=2-t
(2)在Rt△ADE中,
當(dāng)時,
①如圖2,若點(diǎn)Q在CD上,即0≤t≤2
則CQ=t,BP=8-2t
解之得t=3(舍去)
②如圖3,若點(diǎn)Q在AD上,即2<t≤4
過點(diǎn)Q作HG⊥AB于G,交CD的延長線于H
由圖1知,
,則∠A=60°
在Rt△AQG中,AQ=8-t,QG=AQ·sin60°,
在Rt△QDH中,∠QDH=60°,DQ=t-2
由題意知,
即,解之得(不合題意,舍去),
答:存在,使四邊形PBCQ的面積是梯形ABCD面積的一半。
【解析】(1)過D作DE⊥AB于E,過C作CF⊥AB于F,通過,得,若四邊形APQD是直角梯形,則四邊形DEPQ為矩形,通過,代入值,即可求解
(2)假設(shè)當(dāng)時,通過點(diǎn)Q在CD上或在AD上,兩種情況進(jìn)行討論、求解
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:中考必備’04全國中考試題集錦·數(shù)學(xué) 題型:044
如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動,點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.
(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時,S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?
(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點(diǎn),那么OE與OF的長度有什么關(guān)系?借助備用圖說明理由;并進(jìn)一步探究:對任何一個梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點(diǎn)并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com