53、如圖所示,已知四邊形ABCD是平行四邊形,在AB的延長線上截取BE=AB,BF=BD,連接CE,DF,相交于點(diǎn)M.求證:CD=CM.
分析:利用一組對邊平行且相等得到四邊形BDCE是平行四邊形,然后利用對邊平行得到兩組角相等,進(jìn)而整理到△DCM中,得到相等的角,進(jìn)而求解.
解答:證明:∵四邊形ABCD是平行四邊形,
∴AB平行且等于DC.
又∵BE=AB,
∴BE平行且等于DC.
∴四邊形BDCE是平行四邊形.
∵DC∥BF,
∴∠CDF=∠F.
同理,∠BDM=∠DMC.
∵BD=BF,
∴∠BDF=∠F.
∴∠CDF=∠CMD.
∴CD=CM.
點(diǎn)評:本題考查了平行四邊形的判定與性質(zhì),熟練掌握性質(zhì)定理和判定定理是解題的關(guān)鍵.當(dāng)證明兩條在一個(gè)三角形中的邊相等時(shí),通常是利用等角對等邊來進(jìn)行證明.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廈門)如圖所示,已知四邊形OABC是菱形,∠O=60°,點(diǎn)M是邊OA的中點(diǎn),以點(diǎn)O為圓心,r為半徑作⊙O分別交OA,OC于點(diǎn)D,E,連接BM.若BM=
7
,
DE
的長是
3
π
3
.求證:直線BC與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知四邊形OABC是菱形,∠O=60°,點(diǎn)M是邊OA的中點(diǎn),以點(diǎn)O為圓心,r為半徑作⊙O分別交OA,OC于點(diǎn)D,E,連接BM.若BM=
7
,
DE
的長是
3
π
3

(1)求⊙O的半徑;
(2)直線BC與⊙O是否相切?若不相切說明理由,若相切給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知四邊形ABCD的四個(gè)頂點(diǎn)都在⊙O上,∠BCD=120°,則∠B0D=
120°
120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知四邊形ABCD是等腰梯形,DC∥AB,若AD=BC=5,CD=2,AB=8,求梯形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案