【題目】函數(shù)y=ax+b和y=ax2+bx+c(a≠0)在同一個坐標系中的圖象可能為( )
A. B.
C. D.
【答案】D
【解析】
本題可先由一次函數(shù)y=ax+b圖象得到字母系數(shù)的正負,再與二次函數(shù)ax2+bx+c的圖象相比較看是否一致.
A.由一次函數(shù)的圖象可知a>0,b>0,由拋物線圖象可知,開口向上,a>0,對稱軸x=﹣>0,b<0;兩者相矛盾,錯誤;
B.由一次函數(shù)的圖象可知a>0,b<0,由拋物線圖象可知a<0,兩者相矛盾,錯誤;
C.由一次函數(shù)的圖象可知a<0,b>0,由拋物線圖象可知a>0,兩者相矛盾,錯誤;
D.由一次函數(shù)的圖象可知a>0,b<0,由拋物線圖象可知a>0,對稱軸x=﹣>0,b<0;正確.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.
(1)求a,b的值及反比例函數(shù)的解析式;
(2)若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標;
(3)在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點是邊上的動點(點與點、 不重合),過點作交射線于點 ,聯(lián)結(jié),點是的中點,過點 、作直線,交于點,聯(lián)結(jié)、.
(1)當點在邊上,設(shè), .
①寫出關(guān)于 的函數(shù)關(guān)系式及定義域;
②判斷的形狀,并給出證明;
(2)如果,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廣場用如圖1所示的同一種地磚拼圖案,第一次拼成的圖案如圖2所示,共用地磚4塊;第2次拼成的圖案如圖3所示,共用地磚;第3次拼成的圖案如圖4所示,共用地磚,….
(1)直接寫出第4次拼成的圖案共用地磚________塊;
(2)按照這樣的規(guī)律,設(shè)第次拼成的圖案共用地磚的數(shù)量為塊,求與之間的函數(shù)表達式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線交軸于點,交軸于點,以為邊作正方形,請解決下列問題:
(1)求點和點的坐標;
(2)求直線的解析式;
(3)在直線上是否存在點,使為等腰三角形?若存在,請直接寫出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,一次函數(shù)有y=﹣2x+3的圖象與x軸、y軸分別交于A、C兩點,二次函數(shù)y=x2+bx+c的圖象過點C,且與一次函數(shù)在第二象限交于另一點B,若AC:CB=1:2,那么這二次函數(shù)的頂點坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象拋物線G經(jīng)過(﹣5,0),(0,),(1,6)三點,直線l的解析式為y=2x﹣3
(1)求拋物線G的函數(shù)解析式;
(2)求證:拋物線G與直線L無公共點;
(3)若與l平行的直線y=2x+m與拋物線G只有一個公共點P,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家獨家銷售具有地方特色的某種商品,每件進價為40元.經(jīng)過市場調(diào)查,一周的銷售量y件與銷售單價x(x≥50)元/件的關(guān)系如下表:
銷售單價x(元/件) | … | 55 | 60 | 70 | 75 | … |
一周的銷售量y(件) | … | 450 | 400 | 300 | 250 | … |
(1)直接寫出y與x的函數(shù)關(guān)系式: .
(2)設(shè)一周的銷售利潤為S元,請求出S與x的函數(shù)關(guān)系式,并確定當銷售單價在什么范圍內(nèi)變化時,一周的銷售利潤隨著銷售單價的增大而增大?
(3)雅安地震牽動億萬人民的心,商家決定將商品一周的銷售利潤全部寄往災(zāi)區(qū),在商家購進該商品的貸款不超過10000元情況下,請你求出該商家最大捐款數(shù)額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個商場出售相同的某種商品,每件售價均為3000元,并且多買都有一定的優(yōu)惠.甲商場的優(yōu)惠條件是:第一件按原售價收費,其余每件優(yōu)惠30%;乙商場的優(yōu)惠條件是:每件優(yōu)惠25%.設(shè)所買商品為x件時,甲商場收費為y1元,乙商場收費為y2元.
(1)分別求出y1,y2與x之間的關(guān)系式;
(2)當甲、乙兩個商場的收費相同時,所買商品為多少件?
(3)當所買商品為5件時,應(yīng)選擇哪個商場更優(yōu)惠?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com