【題目】如圖,點E、F分別在矩形ABCD的邊AD、AB上,連接EF,四邊形ABFE沿EF翻折能與四邊形重合,且與ED相交,若,則
A. B. C. D.
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆時針旋轉一定角度后與△ADE重合,且點C恰好成為AD中點,如圖
(1)指出旋轉中心,并求出旋轉角的度數.
(2)求出∠BAE的度數和AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知AB是圓O的直徑,圓O過BC的中點D,且DE⊥AC.
(1)求證:DE是圓O的切線;
(2)若∠C=30°,CD=10cm,求圓O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下面的證明:
已知:如圖,點D、E、F分別在線段AB、BC、AC上,連接DE、EF、DM平分∠ADE交EF于點M,,求證:。
證明:(已知)
又(平角定義)
∴∠2=∠BEM(____________________)
∴__________(_________________________)
(_____________________________)
(_____________________________)
又∵DM平分∠ADE(已知)
(角平分線定義)
(等量代換)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形的頂點、在軸上,頂點在軸上,已知,,.
(1)平行四邊形的面積為________;
(2)如圖1,點是邊上的一點,若的面積是平行四邊形的,求點的坐標;
(3)如圖2,將繞點順時針旋轉,旋轉得,在整個旋轉過程中,能否使以點、、、為頂點的四邊形是平行四邊形?若能,求點的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖,在□ABCD中,對角線AC、BD相交于點O.請找出圖中的一對全等三角形,并給予證明;
(2)規(guī)定:一條弧所對的圓心角的度數作為這條弧的度數.
①如圖,在⊙O中,弦AC、BD相交于點P,已知弧AB、弧CD分別為65°和45°,求∠APB;
②一般地,在⊙O中,弦AC、BD相交于點P,若弧AB、弧CD分別為m°和n°,求∠APB.
(用m、n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某餐廳以、兩種食材,利用不同的搭配方式推出了兩款健康餐,其中,甲產品每份含200克、200克;乙產品每份含200克、100克.甲、乙兩種產品每份的成本價分別為、兩種食材的成本價之和,若甲產品每份成本價為16元.店家在核算成本的時候把、兩種食材單價看反了,實際成本比核算時的成本多688元,如果每天甲銷量的4倍和乙銷量的3倍之和不超過120份,那么餐廳每天實際成本最多為______元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一節(jié)數學課上,老師出示了這樣一個問題讓學生探究:
已知:如圖在△ABC中,點D 是BA邊延長線上一動點,點F 在BC上,且,連接DF交AC于點E .
(1)如圖1,當點E恰為DF的中點時,請求出的值;
(2)如圖2,當時,請求出的值(用含a的代數式表示).
思考片刻后,同學們紛紛表達自己的想法:
甲:過點F作FG∥AB交AC于點G,構造相似三角形解決問題;
乙:過點F作FG∥AC交AB于點G,構造相似三角形解決問題;
丙:過點D作DG∥BC交CA延長線于點G,構造相似三角形解決問題;
老師說:“這三位同學的想法都可以” .
請參考上面某一種想法,完成第(1)問的求解過程,并直接寫出第(2)問的值.
圖1 圖2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com